Участие микроРНК в развитии ишемической болезни сердца
https://doi.org/10.18087/cardio.2019.10.n558
Аннотация
Атерогенез - сложный процесс, в котором участвуют разные типы клеток и регуляторных молекул. Открытые в конце ХХ века молекулы микроРНК служат важными регуляторами ряда патофизиологических процессов, вовлеченных в атерогенез. В обзоре рассматриваются данные об участии различных микроРНК в развитии атеросклероза и его основных клинических проявлений и обсуждается возможность использования микроРНК в качестве диагностических маркеров этих заболеваний.
Об авторах
Н. Г. КукаваРоссия
Нино Гуриеловна Кукава - кардиолог отдела неотожной кардиологии НМИЦ кардиологии; к.м.н.
Москва
Р. М. Шахнович
Россия
Роман Михайлович Шахнович – доктор медицинских наук, профессор, ведущий научный сотрудник отдела неотложной кардиологии НМИЦ кардиологии
Москва
Г. Ж. Осьмак
Россия
Герман Жакович Осьмак
Москва
Н. М. Баулина
Россия
Наталья Михайловна Баулина
Москва
Н. А. Матвеева
Россия
Наталья Алексеевна Матвеева
Москва
О. О. Фаворова
Россия
Ольга Олеговна Фаворова - профессор, доктор биологических наук.
Москва
Список литературы
1. Samanta S, Balasubramanian S, Rajasingh S, Patel U, Dhanasekaran A, Dawn B et al. MicroRNA: A new therapeutic strategy for cardiovascular diseases. Trends in Cardiovascular Medicine. 2016;26(5):407-19. DOI: 10.1016/j.tcm.2016.02.004
2. Rebane A, Akdis CA. MicroRNAs: Essential players in the regulation of inflammation. Journal of Allergy and Clinical Immunology. 2013;132(1):15-26. DOI: 10.1016/j.jaci.2013.04.011
3. Zhao Y, Cong L, Lukiw WJ. Plant and Animal microRNAs (miR-NAs) and Their Potential for Inter-kingdom Communication. Cellular and Molecular Neurobiology. 2018;38(1):133-40. DOI: 10.1007/s10571-017-0547-4
4. Cardin S-E, Borchert GM. Viral MicroRNAs, Host MicroRNAs Regulating Viruses, and Bacterial MicroRNA-Like RNAs. Methods in Molecular Biology (Clifton, N.J.). 2017;1617:39-56. DOI: 10.1007/978-1-4939-7046-9_3
5. Gregory RI, Chendrimada TP, Shiekhattar R. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods in Molecular Biology (Clifton, N.J.). 2006;342:33-47. DOI: 10.1385/1-59745-123-1:33
6. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research. 2008;19(1):92-105. DOI: 10.1101/gr.082701.108
7. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Research. 2019;47(D1):D155-62. DOI: 10.1093/nar/gky1141
8. Ainiding G, Kawano Y, Sato S, Isobe N, Matsushita T, Yoshimura S et al. Interleukin 2 receptor a chain gene polymorphisms and risks of multiple sclerosis and neuromyelitis optica in southern Japanese. Journal of the Neurological Sciences. 2014;337(1-2):147-50. DOI: 10.1016/j.jns.2013.11.037
9. Cai X. Human microRNAs are processed from capped, poly-adenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957-66. DOI: 10.1261/rna.7135204
10. Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nature Reviews Genetics. 2016;17(12):719-32. DOI: 10.1038/nrg.2016.134
11. Rhead B, Shao X, Graves J S, Chitnis T, Waldman AT, Lotze T et al. miRNA contributions to pediatric-onset multiple sclerosis inferred from GWAS. Annals of Clinical and Translational Neurology. 2019;6(6):1053-61. DOI: 10.1002/acn3.786
12. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 2007;9(6):654-9. DOI: 10.1038/ncb1596
13. Ghai V, Lee I, Wang K. Circulating miRNAs as Tumor Biomarkers. Elsevier. -2019. -P. 191-196. ISBN: 978-0-12-811785-9. DOI: 10.1016/B978-0-12-811785-9.00013-2. In: Oncogenomics Elsevier;
14. Baulina NM, Kulakova OG, Favorova OO. MicroRNAs: The Role in Autoimmune Inflammation. Acta Naturae. 2016;8(1):21-33. PMID: 27099782
15. Navickas R, Gal D, Laucevicius A, Taparauskaite A, Zdanyte M, Holvoet P. Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovascular Research. 2016;111(4):322-37. DOI: 10.1093/cvr/cvw174
16. Shah P, Bristow MR, Port JD. MicroRNAs in Heart Failure, Cardiac Transplantation, and Myocardial Recovery: Biomarkers with Therapeutic Potential. Current Heart Failure Reports. 2017;14(6):454-64. DOI: 10.1007/s11897-017-0362-8
17. Silva AMG da, Araujo JNG de, Freitas RCC de, Silbiger VN. Circulating MicroRNAs as Potential Biomarkers of Atrial Fibrillation. BioMed Research International. 2017;2017:7804763. DOI: 10.1155/2017/7804763
18. Kumar S, Williams D, Sur S, Wang J-Y, Jo H. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascular Pharmacology. 2019;114:76-92. DOI: 10.1016/j.vph.2018.10.001
19. Eyileten C, Wicik Z, De Rosa S, Mirowska-Guzel D, Soplinska A, Indolfi C et al. MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke - A Comprehensive Review and Bioinformatic Analysis. Cells. 2018;7(12):249. DOI: 10.3390/cells7120249
20. Wang S-S, Wu L-J, Li J-J-H, Xiao H-B, He Y, Yan Y-X. A meta-analysis of dysregulated miRNAs in coronary heart disease. Life Sciences. 2018;215:170-81. DOI: 10.1016/j.lfs.2018.11.016
21. Long J-K, Dai W, Zheng Y-W, Zhao S-P. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Molecular Medicine. 2019;25(1):26. DOI: 10.1186/s10020-019-0085-2
22. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism. 2006;3(2):87-98. DOI: 10.1016/j.cmet.2006.01.005
23. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896-9. DOI: 10.1038/nature06783
24. Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nature Medicine. 2013;19(7):892-900. DOI: 10.1038/nm.3200
25. Yang K, He YS, Wang XQ, Lu L, Chen QJ, Liu J et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Letters. 2011;585(6):854-60. DOI: 10.1016/j.febslet.2011.02.009
26. Rottiers V, Najafi-Shoushtari SH, Kristo F, Gurumurthy S, Zhong L, Li Y et al. MicroRNAs in Metabolism and Metabolic Diseases. Cold Spring Harbor Symposia on Quantitative Biology. 2011;76:225-33. DOI: 10.1101/sqb.2011.76.011049
27. Cho Y, Baldan A. Quest for new biomarkers in atherosclerosis. Missouri Medicine. 2013;110(4):325-30. PMID: 24003651
28. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404-7. DOI: 10.1038/nature10486
29. Zhang X, Price NL, Fernandez-Hernando C. Non-coding RNAs in lipid metabolism. Vascular Pharmacology. 2019;114:93-102. DOI: 10.1016/j.vph.2018.06.011
30. Staszel T, Zapala B, Polus A, Sadakierska-Chudy A, Kiec-Wilk B, Stfpien E et al. Role of microRNAs in endothelial cell pathophysiology. Polskie Archiwum Medycyny Wewnetrznej. 2011;121(10):361-6. PMID: 21946298
31. Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research. 2008;79(4):581-8. DOI: 10.1093/cvr/cvn156
32. Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen C-Z et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 2008;135(24):3989-93. DOI: 10.1242/dev.029736
33. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B et al. Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection. Science Signaling. 2009;2(100):ra81-ra81. DOI: 10.1126/scisig-nal.2000610
34. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression ofvascular cell adhesion molecule 1. Proceedings of the National Academy of Sciences. 2008;105(5):1516-21. DOI: 10.1073/pnas.0707493105
35. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nature Medicine. 2014;20(4):368-76. DOI: 10.1038/nm.3487
36. Wu W, Xiao H, Laguna-Fernandez A, Villarreal G, Wang K-C, Geary GG et al. Flow-Dependent Regulation ofKruppel-Like Factor 2 Is Mediated by MicroRNA-92a. Circulation. 2011;124(5):633-41. DOI: 10.1161/CIRCULATIONAHA.110.005108
37. Fang Y, Davies PF. Site-Specific MicroRNA-92a Regulation of Kruppel-Like Factors 4 and 2 in Atherosusceptible Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(4):979-87. DOI: 10.1161/ATVBAHA.111.244053
38. Loyer X, Potteaux S, Vion A-C, Guerin CL, Boulkroun S, Rautou P-E et al. Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice. Circulation Research. 2014;114(3):434-43. DOI: 10.1161/CIRCRESAHA.114.302213
39. Guo M, Mao X, Ji Q, Lang M, Li S, Peng Y et al. miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunology and Cell Biology. 2010;88(5):555-64. DOI: 10.1038/icb.2010.16
40. Indolfi C, Iaconetti C, Gareri C, Polimeni A, De Rosa S. Noncoding RNAs in vascular remodeling and restenosis. Vascular Pharmacology. 2019;114:49-63. DOI: 10.1016/j.vph.2018.10.006
41. Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis. Biochemical and Biophysical Research Communications. 2009;386(4):549-53. DOI: 10.1016/j.bbrc.2009.06.075
42. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A et al. MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice. Science. 2009;324(5935):1710-3. DOI: 10.1126/science.1174381
43. Nichol D, Stuhlmann H. EGFL7: a unique angiogenic signaling factor in vascular development and disease. Blood. 2012;119(6):1345-52. DOI: 10.1182/blood-2011-10-322446
44. Fish JE, Santoro MM, Morton SU, Yu S, Yeh R-F, Wythe JD et al. miR-126 Regulates Angiogenic Signaling and Vascular Integrity. Developmental Cell. 2008;15(2):272-84. DOI: 10.1016/j.dev-cel.2008.07.008
45. Tomasetti M, Re M, Monaco F, Gaetani S, Rubini C, Bertini A et al. MiR-126 in intestinal-type sinonasal adenocarcinomas: exosomal transfer of MiR-126 promotes anti-tumour responses. BMC Cancer. 2018;18(1):896. DOI: 10.1186/s12885-018-4801-z
46. Lu Y, Thomson JM, Wong HYF, Hammond SM, Hogan BLM. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Developmental Biology. 2007;310(2):442-53. DOI: 10.1016/j.ydbio.2007.08.007
47. Fasanaro P, Greco S, Lorenzi M, Pescatori M, Brioschi M, Kulshreshtha R et al. An Integrated Approach for Experimental Target Identification of Hypoxia-induced miR-210. Journal of Biological Chemistry. 2009;284(50):35134-43. DOI: 10.1074/jbc.M109.052779
48. Ma X, Wang J, Li J, Ma C, Chen S, Lei W et al. Loading MiR-210 in Endothelial Progenitor Cells Derived Exosomes Boosts Their Beneficial Effects on Hypoxia/Reoxygeneation-Injured Human Endothelial Cells via Protecting Mitochondrial Function. Cellular Physiology and Biochemistry. 2018;46(2):664-75. DOI: 10.1159/000488635
49. Haver VG, Slart RHJA, Zeebregts CJ, Peppelenbosch MP, Tio ^A. Rupture of Vulnerable Atherosclerotic Plaques: MicroRNAs Conducting the Orchestra? Trends in Cardiovascular Medicine. 2010;20(2):65-71. DOI: 10.1016/j.tcm.2010.04.002
50. Li Y, Song Y-H, Li F, Yang T, Lu YW, Geng Y-J. microRNA-221 regulates high glucose-induced endothelial dysfunction. Biochemical and Biophysical Research Communications. 2009;381(1):81-3. DOI: 10.1016/j.bbrc.2009.02.013
51. Vacante F, Denby L, Sluimer JC, Baker AH. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vascular Pharmacology. 2019;112:24-30. DOI: 10.1016/j.vph.2018.11.006
52. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705-10. DOI: 10.1038/nature08195
53. Rader DJ, Parmacek MS. Secreted miRNAs suppress atherogenesis. Nature Cell Biology. 2012;14(3):233-5. DOI: 10.1038/ncb2452
54. Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A. MicroRNA-126, -145, and -155: A Therapeutic Triad in Atherosclerosis? Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(3):449-54. DOI: 10.1161/ATVBAHA.112.300279
55. Liu X, Cheng Y, Yang J, Xu L, Zhang C. Cell-specific effects of miR-221/222 in vessels: Molecular mechanism and therapeutic application. Journal of Molecular and Cellular Cardiology. 2012;52(1):245-55. DOI: 10.1016/j.yjmcc.2011.11.008
56. Zhu N, Zhang D, Chen S, Liu X, Lin L, Huang X et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215(2):286-93. DOI: 10.1016/j.atherosclerosis.2010.12.024
57. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N et al. MicroRNA-145 Targeted Therapy Reduces Atherosclerosis. Circulation. 2012;126(11_suppl_1):S81-90. DOI: 10.1161/CIRCULATIONAHA.111.084186
58. O'Sullivan JF, Martin K, Caplice NM. Microribonucleic Acids for Prevention of Plaque Rupture and In-Stent Restenosis. Journal of the American College of Cardiology. 2011;57(4):383-9. DOI: 10.1016/j.jacc.2010.09.029
59. Tsai P-C, Liao Y-C, Wang Y-S, Lin H-F, Lin R-T, Juo S-HH. Serum microRNA-21 and microRNA-221 as Potential Biomarkers for Cerebrovascular Disease. Journal of Vascular Research. 2013;50(4):346-54. DOI: 10.1159/000351767
60. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nature Reviews Immunology. 2013;13(10):709-21. DOI: 10.1038/nri3520
61. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. Journal of Clinical Investigation. 2012;122(11):4190-202. DOI: 10.1172/JCI61716
62. Wei Y, Zhu M, Corbalan-Campos J, Heyll K, Weber C, Schober A. Regulation of Csf1r and Bcl6 in Macrophages Mediates the Stage-SpecificEffectsofMicroRNA-155onAtherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35(4):796-803. DOI: 10.1161/ATVBAHA.114.304723
63. Du F, Yu F, Wang Y, Hui Y, Carnevale K, Fu M et al. MicroRNA-155 Deficiency Results in Decreased Macrophage Inflammation and Attenuated Atherogenesis in Apolipoprotein E-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2014;34(4):759-67. DOI: 10.1161/ATVBAHA.113.302701
64. Tian G-P, Chen W-J, He P-P, Tang S-L, Zhao G-J, Lv Y-C et al. MicroRNA-467b targets LPL gene in RAW 264.7 macrophages and attenuates lipid accumulation and proinflammatory cytokine secretion. Biochimie. 2012;94(12):2749-55. DOI: 10.1016/j.bio-chi.2012.08.018
65. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences. 2008;105(30):10513-8. DOI: 10.1073/pnas.0804549105
66. Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends in Biochemical Sciences. 2012;37(11):460-5. DOI: 10.1016/j.tibs.2012.08.003
67. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C et al. Circulating MicroRNAs in Patients With Coronary Artery Disease. Circulation Research. 2010;107(5):677-84. DOI: 10.1161/CIRCRESAHA.109.215566
68. Weber M, Baker MB, Patel RS, Quyyumi AA, Bao G, Searles CD. MicroRNA Expression Profile in CAD Patients and the Impact of ACEI/ARB. Cardiology Research and Practice. 2011;2011:1-5. DOI: 10.4061/2011/532915
69. Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clinical Science. 2010;119(9):395-405. DOI: 10.1042/CS20100003
70. Gao H, Guddeti RR, Matsuzawa Y, Liu L-P, Su L-X, Guo D et al. Plasma Levels of microRNA-145 Are Associated with Severity of Coronary Artery Disease. PLOS ONE. 2015;10(5):e0123477. DOI: 10.1371/journal.pone.0123477
71. Gao W, He H-W, Wang Z-M, Zhao H, Lian X-Q, Wang Y-S et al. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids in Health and Disease. 2012;11(1):55. DOI: 10.1186/1476-5nX-11-55
72. Sun X, Zhang M, Sanagawa A, Mori C, Ito S, Iwaki S et al. Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol. Thrombosis Journal. 2012;10(1):16. DOI: 10.1186/1477-9560-10-16
73. Gacon J, Kablak-Ziembicka A, Stfpien E, Enguita FJ, Karch I, Derlaga B et al. Decision-making microRNAs (miR-124, -133a/b, -34a and -134) in patients with occluded target vessel in acute coronary syndrome. Kardiologia Polska. 2016;74(3):280-8. DOI: 10.5603/KP.a2015.0174
74. Zeller T, Keller T, Ojeda F, Reichlin T, Twerenbold R, Tzikas S et al. Assessment of microRNAs in patients with unstable angina pectoris. European Heart Journal. 2014;35(31):2106-14. DOI: 10.1093/eurheartj/ehu151
75. Zhu G, Yang L, Guo R, Liu H, Shi Y, Ye J et al. microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the Gensini score: Coronary Artery Disease. 2014;25(4):304-10. DOI: 10.1097/MCA.0000000000000088
76. DAlessandra Y, Carena MC, Spazzafumo L, Martinelli F, Bassetti B, Devanna P et al. Diagnostic Potential of Plasmatic MicroRNA Signatures in Stable and Unstable Angina. PLoS ONE. 2013;8(11):e80345. DOI: 10.1371/journal.pone.0080345
77. Cui Y, Song J, Li S, Lee C, Zhang F, Chen H. Plasmatic MicroRNA Signatures in Elderly People with Stable and Unstable Angina. International Heart Journal. 2018;59(1):43-50. DOI: 10.1536/ihj.17-063
78. D'Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal. 2010;31(22):2765-73. DOI: 10.1093/eurheartj/ehq167
79. Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM, Spinale FG. Relationship Between the Temporal Profile of Plasma microRNA and Left Ventricular Remodeling in Patients After Myocardial Infarction. Circulation: Cardiovascular Genetics. 2011;4(6):614-9. DOI: 10.1161/CIRCGENETICS.111.959841
80. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L et al. Circulating MicroRNA-208b and MicroRNA-499 Reflect Myocardial Damage in Cardiovascular Disease. Circulation: Cardiovascular Genetics. 2010;3(6):499-506. DOI: 10.1161/CIRCGENETICS.110.957415
81. Devaux Y, Vausort M, Goretti E, Nazarov PV, Azuaje F, Gilson G et al. Use of Circulating MicroRNAs to Diagnose Acute Myocardial Infarction. Clinical Chemistry. 2012;58(3):559-67. DOI: 10.1373/clinchem.2011.173823
82. Devaux Y, Mueller M, Haaf P, Goretti E, Twerenbold R, Zangrando J et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. Journal of Internal Medicine. 2015;277(2):260-71. DOI: 10.1111/joim.12183
83. Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. Journal of Molecular and Cellular Cardiology. 2011;51(5):872-5. DOI: 10.1016/j.yjmcc.2011.07.011
84. Baulina N, Osmak G, Kiselev I, Matveeva N, Kukava N, Shakhnovich R et al. NGS-identified circulating miR-375 as a potential regulating component of myocardial infarction associated network. Journal of Molecular and Cellular Cardiology. 2018;121:173-9. DOI: 10.1016/j.yjmcc.2018.07.129
85. Zhang R, Lan C, Pei H, Duan G, Huang L, Li L. Expression of circulating miR-486 and miR-150 in patients with acute myocardial infarction. BMC Cardiovascular Disorders. 2015;15(1):51. DOI: 10.1186/s12872-015-0042-0
86. Goretti E, Vausort M, Wagner DR, Devaux Y. Association between circulating microRNAs, cardiovascular risk factors and outcome in patients with acute myocardial infarction. International Journal of Cardiology. 2013;168(4):4548-50. DOI: 10.1016/j.ijcard.2013.06.092
87. Matsumoto S, Sakata Y, Nakatani D, Suna S, Mizuno H, Shimizu M et al. A subset of circulating microRNAs are predictive for cardiac death after discharge for acute myocardial infarction. Biochemical and Biophysical Research Communications. 2012;427(2):280-4. DOI: 10.1016/j.bbrc.2012.09.039
88. Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard J-M et al. Prospective Study on Circulating MicroRNAs and Risk of Myocardial Infarction. Journal of the American College of Cardiology. 2012;60(4):290-9. DOI: 10.1016/j.jacc.2012.03.056
89. Jaguszewski M, Osipova J, Ghadri J-R, Napp LC, Widera C, Franke J et al. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. European Heart Journal. 2014;35(15):999-1006. DOI: 10.1093/eurheartj/eht392
90. Devaux Y, Vausort M, McCann GP, Kelly D, Collignon O, Ng LL et al. A Panel of 4 microRNAs Facilitates the Prediction of Left Ventricular Contractility after Acute Myocardial Infarction. PLoS ONE. 2013;8(8):e70644. DOI: 10.1371/journal.pone.0070644
91. Ghaffarzadeh M, Ghaedi H, Alipoor B, Omrani MD, Kazerouni F, Shanaki M et al. Association of miR-149 (RS2292832) Variant with the Risk of Coronary Artery Disease. Journal of Medical Biochemistry. 2017;36(3):251-8. DOI: 10.1515/jomb-2017-0005
92. Osei ET, Florez-Sampedro L, Tasena H, Faiz A, Noordhoek JA, Timens W et al. miR-146a-5p plays an essential role in the aberrant epithelial-fibroblast cross-talk in COPD. European Respiratory Journal. 2017;49(5):1602538. DOI: 10.1183/13993003.02538-2016
93. Осьмак Г.Ж., Матвеева Н.А., Титов Б.В., Фаворова О.О. Связь полиморфизма гена MIR196A2 с инфарктом миокарда и возможное вовлечение микроРНК miR-196a2 в сигнальные пути, участвующие в формировании патологического фенотипа. Молекулярная биология. 2018;52(6):1006-13. DOI: 10.1134/S0026898418060149
94. Guo R, Feng Z, Yang Y, Xu H, Zhang J, Guo K et al. Association of a MiR-499 SNP and risk of congenital heart disease in a Chinese population. Cellular and Molecular Biology (Noisy-Le-Grand, France). 2018;64(10):108-12. PMID: 30084801
95. Yu K, Ji Y, Wang H, Xuan QK, Li BB, Xiao JJ et al. Association of miR-196a2, miR-27a, and miR-499 polymorphisms with isolated congenital heart disease in a Chinese population. Genetics and Molecular Research. 2016;15(4):48929. DOI: 10.4238/gmr15048929
96. Wang W, Xu Z, Zhu X, Chang X. Mining the potential therapeutic targets for coronary artery disease by bioinformatics analysis. Molecular Medicine Reports. 2018;18(6):5069-75. DOI: 10.3892/mmr.2018.9551
97. Mearns BM. Phase III trial of mipomersen in heterozygous FH. Nature Reviews Cardiology. 2012;9(12):674-674. DOI: 10.1038/nrcardio.2012.151
98. Xue X, Shi X, Dong H, You S, Cao H, Wang K et al. Delivery of microRNA-1 inhibitor by dendrimer-based nanovector: An early targeting therapy for myocardial infarction in mice. Nanomedicine: Nanotechnology, Biology and Medicine. 2018;14(2):619-31. DOI: 10.1016/j.nano.2017.12.004
Рецензия
Для цитирования:
Кукава Н.Г., Шахнович Р.М., Осьмак Г.Ж., Баулина Н.М., Матвеева Н.А., Фаворова О.О. Участие микроРНК в развитии ишемической болезни сердца. Кардиология. 2019;59(10):78-87. https://doi.org/10.18087/cardio.2019.10.n558
For citation:
Kukava N.G., Shkhnovich R.M., Osmak G.Z., Baulina N.M., Matveeva N.A., Favorova O.O. The Role of microRNA in the Development of Ischemic Heart Disease. Kardiologiia. 2019;59(10):78-87. (In Russ.) https://doi.org/10.18087/cardio.2019.10.n558