Возможности мультиспиральной компьютерной томографии в оценке атеросклеротического поражения коронарных артерий
Аннотация
В настоящее время не существует общепринятых методов обнаружения нестабильных атеросклеротических бляшек, хотя многие исследования последних лет посвящены данному вопросу. В статье представлены современные возможности мультиспиральной компьютерной томографии в визуализации атеросклеротического поражения коронарного русла, в том числе в выявлении нестабильного поражения, что может помочь в диагностике субклинического обострения ишемической болезни сердца, а также в стратификации риска развития острых коронарных осложнений.
Об авторах
Х. Э. Ел МанааРоссия
Москва.
Д. Ю. Щекочихин
Россия
Москва.
М. С. Шабанова
Россия
Москва.
А. А. Ломоносова
Россия
Москва.
Д. Г. Гогниева
Россия
Москва.
С. К. Терновой
Россия
Москва.
М. А. Шария
Россия
Москва.
Д. Ф. Меситская
Россия
Москва.
Ф. Ю. Копылов
Россия
Москва.
А. Л. Сыркин
Россия
Москва.
Список литературы
1. Larose E., Yeghiazarians Y., Libby P. et al. Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging. Circulation 2005;112:2324–2331. DOI: 10.1161/CIRCULATIONAHA.105.538942
2. Becker C.R., Nikolaou K., Muders M. et al. Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol 2003;13:2094–2098. DOI: 10.1007/s00330-003-1889-5
3. Galonska M., Ducke F., Kertesz-Zborilova T. et al. Characterization of atherosclerotic plaques in human coronary arteries with 16-slice multidetector row computed tomography by analysis of attenuation profiles. Acad Radiol 2008;15:222–230. DOI: 10.1016/j.acra.2007.09.007
4. Ferencik M., Chan R.C., Achenbach S. et al. Arterial wall imaging: evaluation with 16-section multidetector CT in blood vessel phantoms and ex vivo coronary arteries. Radiology 2006;240:708–716. DOI: https://doi.org/10.1148/radiol.2403051204
5. Stary H.C., Chandler A.B., Dinsmore R.E. et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation 1995;92:1355–1374. DOI: https://doi.org/10.1161/01.CIR.92.5.1355
6. Virmani R., Kolodgie F.D., Burke A.P. et al. Lessons from sudden coronary death. A compressive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–1275. DOI: https://doi.org/10.1161/01.ATV.20.5.1262
7. Hetterich H., Webber N., Willner M. et al. AHA classification of coronary and carotid atherosclerotic plaques by grating-based phasecontrast computed tomography. Eur Radiol 2016;26(9):3223–3233. DOI: https://doi.org/10.1007/s00330-015-4143-z
8. Mintz G.S., Nissen S.E., Anderson W.D. et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS): a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2001;7:1478–1492. DOI: https://doi.org/10.1016/S0735-1097 (01)01175-5
9. Kolodgie F.D., Burke A.P., Farb A. et al. The thincap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 2001;16:285–292. 10. Virmani R., Burke A.P., Kolodgie F.D., Farb A. Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol 2002;15:439–446. DOI: 10.1111/j.1540-8183.2002.tb01087.x
10. Virmani R., Burke A.P., Farb A., Kolodgie F.D. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47(8 suppl):C13–C18. DOI: 10.1016/j.jacc.2005.10.065
11. Marwan M., Taher M.A., El Meniawy K. et al. In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: a head to head comparison with IVUS. Atherosclerosis 2011;215:110–115. DOI: 10.1016/j.atherosclerosis.2010.12.006
12. Motoyama S., Sarai M., Harigaya H., Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 2009;54:49–57. DOI: 10.1016/j.jacc.2009.02.068
13. Henzler T., Porubsky S., Kayed H. et al. Attenuation-based characterization of coronary atherosclerotic plaque: comparison of dual source and dual energy CT with single-source CT and histopatho logy. Eur J Radiol 2011;80:54–59. DOI: 10.1016/j.ejrad.2010.07.024
14. Virmani R., Kolodgie F.D., Burke A.P. et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–1275. DOI: https://doi.org/10.1161/01.ATV.20.5.1262
15. Kolodgie F.D., Gold H.K., Burke A.P. et al. Intra plaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349:2316–2325. DOI: 10.1056/NEJMoa035655
16. Fleiner M., Kummer M., Mirlacher M. et al. Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation 2004;110:2843–2850. DOI: 10.1161/01.CIR.0000146787.16297.E8
17. Virmani R., Kolodgie F.D., Burke A.P. et al. Рlaque progression and vulnerability to rupture: angiogenesis as a source of intra plaque hemorrhage. Arterioscler Thromb Vasc Biol 2005;25:2054–2061. DOI: 10.1161/01.ATV.0000178991.71605.18
18. Moulton K.S. Angiogenesis in atherosclerosis: gathering evidence beyond speculation. Curr Opin Lipidol 2006;17:548–555. DOI: 10.1097/01.mol.0000245261.71129.f0
19. Wintermark M., Jawadi S.S., Rapp J.H. et al. High resolution CT imaging of carotid artery atherosclerotic plaques. AJNR 2008;29:875–882. DOI: 10.3174/ajnr.A0950
20. Coombs B.D., Rapp J.H., Ursell P.C. et al. Structure of plaque at carotid bifurcation: high-resolution MRI with histological correlation. Stroke 2001; 32:2516–2521. DOI: https://doi.org/10.1161/hs1101.098663
21. Kwon H.M., Sangiorgi G., Ritman E.L. et al. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest 1998;101:1551–1556. DOI: 10.1172/JCI1568
22. Sirol M., Moreno P.R., Purushothaman K.R. et al. Increased neovascularization in advanced lipid-rich atherosclerotic lesions detected by gadofluorine-Menhanced MRI: implications for plaque vulnerability. Circ Cardiovasc Imaging 2009;2:391–396. DOI: 10.1161/CIRCIMAGING.108.801712
23. Staub D., Schinkel A.F., Coll B. et al. Contrast-enhanced ultrasound imaging of the vasa vasorum: from early atherosclerosis to the identification of unstable plaques. JACC Cardiovasc Imaging 2010;3:761–771. DOI: 10.1016/j.jcmg.2010.02.007
24. Barysheva N.A., Merkulova I.N., Shabanova M.S. et al. Assessment of Coronary Plaques in Patients with Acute Coronary Syndrome without Persistent ST-Segment Elevation. Kardiologiya 2015;55(8):5–11. Russian (Барышева Н.А., Меркулова И.Н., Шабанова М.С. и др. Оценка состояния АСБ у больных с острым коронарным синдромом без подъема сегмента ST. Кардиология 2015;55(8):5– 11.) DOI: https://dx.doi.org/10.18565/cardio.2015.8.5-1
25. Lloyd-Jones D., Adams R.J., Brown T.M. et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics, 2010 update: a report from the American Heart Association. Circulation 2010;121:e46–e215. DOI: 10.1161/CIRCULATIONAHA.109.192667
26. Naghavi M., Libby P., Falk E. et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 2003;108:1664–1672. DOI: 10.1161/01. CIR.0000087480.94275.97
27. Farb A., Burke A.P., Tang A.L. et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996;93:1354–1363. DOI: https://doi.org/10.1161/01.CIR.93.7.1354
28. Burke A.P., Virmani R., Galis Z. et al. 34th Bethesda Conference: task force 2 – what is the pathologic basis for new atherosclerosis imaging techniques? J Am Coll Cardiol 2003;41:1874–1886. DOI: https://doi.org/10.1016/S0735-1097 (03)00359-0
29. Ternovoy S.K., Veselova T.N. MDCT in detection of unstable coronary plaques. Russian Electronic Journal of Radiology 2014;4(1):7–13. Russian (Терновой С.К., Веселова Т.Н. Выявление нестабильных бляшек в коронарных артериях с помощью мультиспиральной компьютерной томографии. Российский электронный журнал лучевой диагностики 2014;4(1):7–13).
30. Glagov S., Weisenberg E., Zarins C.K. et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl JMed 1987;316:1371–1375. DOI: 10.1056/NEJM198705283162204
31. Ohayon J., Finet G., Gharib A.M. et al. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 2008;295:H717–H727. DOI: 10.1152/ajpheart.00005.2008
32. Schoenhagen P., Ziada K.M., Kapadia S.R. et al. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 2000;101:598–603. DOI: https://doi.org/10.1161/01.CIR.101.6.598
33. Gauss S., Achenbach S., Pflederer T. et al. Assessment of coronary artery remodelling by dual-source CT: a head-tohead comparison with intravascular ultrasound. Heart 2011;97:991–997. DOI: 10.1136/hrt.2011.223024
34. Higashi M. Noninvasive assessment of coronary plaque using multidetector row computed tomography: does MDCT accurately estimate plaque vulnerability? (Con). Circ J 2011;75:1522–1528. DOI: https://doi.org/10.1253/circj.CJ-11-0313
35. Cury R.C., Abbara S., Achenbach S. et al. CAD-RADS™: Coro nary Artery Disease - Reporting and Data System: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Am Coll Radiol 2016;13(12):1458–1466.e9. DOI: 10.1016/j.jacr.2016.04.024.
36. Sun Z., Xu L. Coronary CT Angiography in the Quantitative Assessment of Coronary Plaques. Biomed Res Int 2014;2014: 346380. DOI: 10.1155/2014/346380.
37. Van Velzen J.E., de Graaf F.R., de Graaf M.A. et al. Comprehensive assessment of spotty calcifications on computed tomography angiography: comparison to plaque characteristics on intravascular ultrasound with radiofrequency backscatter analysis. J Nucl Cardiol 2011;18:893–903. DOI: 10.1007/s12350-011-9428-2
38. Ternovoy S.K., Shabanova M.S., Gaman S.A. et al. Role of computed tomography in detection of vulnerable coronary plaques in comparison with intravascular ultrasound. Russian Electronic Journal of Radiology 2016;6(3):68–79. DOI: 10.21569/2222-7415-2016-6-3-68-79 Russian (Терновой С.К., Шабанова М.С., Гаман С.А. и др. Роль компьютерной томографии в выявлении нестабиль-ных АСБ коронарных артерий: сопоставление результатов ком-пьютерной томографии и внутрисосудистого ультразвукового исследования. Российский электронный журнал лучевой диа-гностики 2016;6(3):68–79).
39. Kashiwagi M., Tanaka A., Kitabata H. et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 2009;2:1412–1419. DOI: 10.1016/j.jcmg.2009.09.012
40. Kashiwagi M., Tanaka A., Shimada K. et al. Distribution, frequency and clinical implications of napkin-ring sign assessed by multidetector computed tomography. J Cardiology 2013;61:399–403. DOI: 10.1016/j.jjcc.2013.01.004
41. Seifarth H., Schlett C.L., Nakano M. et al. Histopathological correlates of the napkin-ring sign plaque in coronary CT angiography. Atherosclerosis 2012;224(1):90–96. DOI: 10.1016/j.atherosclerosis.2012.06.021
42. Maurovich-Horvat P., Hoffmann U., Vorpahl M. et al. The NapkinRing Sign: CT Signature of High-Risk Coronary Plaques? JACC: Cardiovascular Imaging 2010;3(4):440–444. DOI: 10.1016/j.jcmg.2010.02.003
43. Veselova T.N., Merkulova I.N., Barysheva N.A. et al. Comparison of characteristics of atherosclerotic plaques in patients with acute coronary syndrome and stable ischemic heart disease: data of multispiral computed tomography. Kardiologiya 2013;53(12):14-20. Russian (Веселова Т.Н., Меркулова И.Н., Барышева Н.А. и др. Сравнение особенностей АСБ в коронарных артериях у больных с острым коронарным синдромом и стабильной формой ишемической болезни сердца по данным мультиспиральной компьютерной томографии. Кардиология 2013;53 (12):14–20).
44. Thilo C., Gebregziabher M., Mayer F.B. et al. Correlation of regional distribution and morphological pattern of calcif ication at CT coronary artery calcium scoring with non-calcified plaque formation and stenosis. Eur Radiol 2010;20:855–861. DOI: 10.1007/s00330-009-1630-0
45. Xu Y., Mintz G.S., Tam A. et al. Prevalence, distribution, predictors, and outcomes of patients with calcified nodules in native coronary arteries: a 3-vessel intravascular ultrasound analysis from Providing Regional Observations to Study Predictors of Events in the Coronary Tree (PROSPECT). Circulation 2012;126:537–545. DOI: 10.1161/CIRCULATIONAHA.111.055004
46. Huang H., Virmani R., Younis H. et al. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 2001;103:1051–1056. DOI: https://doi.org/10.1161/01.CIR.103.8.1051
47. Burke A.P., Weber D.K., Kolodgie F.D. et al. Pathophysiology of calcium deposition in coronary arteries. Herz 2001;26:239–244.
48. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685–1695. DOI: 10.1056/NEJMra043430
49. Boogers M.J., Broersen A., van Velzen J.E. et al. Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur Heart J 2012;33:1007–1016. DOI: 10.1093/eurheartj/ehr465
50. Leschka S., Seitun S., Dettmer M. et al. Ex vivo evaluation of coronary atherosclerotic plaques: characterization with dual-source CT in comparison with histopathology. J Cardiovasc Comput Tomogr 2010;4:301–308. DOI: 10.1016/j.jcct.2010.05.016
51. Schroeder S., Kopp A.F., Baumbach A. et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001;37:1430–1435. DOI: https://doi.org/10.1016/S0735-1097 (01)01115-9
52. Achenbach S., Moselewski F., Ropers D. et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004;109:14–17. DOI: 10.1161/01.CIR.0000111517.69230.0F
53. Hoffmann U., Moselewski F., Nieman K. et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions instable angina by multidetector computed tomography. J Am Coll Cardiol 2006;47:1655–1662. DOI: 10.1016/j.jacc.2006.01.041
54. Motoyama S., Kondo T., Sarai M. et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 2007;50:319–326. DOI: 10.1016/j.jacc.2007.03.044
55. Becker C.R., Nikolaou K., Muders M. et al. Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol 2003; 13:2094–2098. DOI: 10.1007/s00330-003-1889-5
56. Galonska M., Ducke F., Kertesz-Zborilova T. et al. Characterization of atherosclerotic plaques in human coronary arteries with 16-slice multidetector row computed tomography by analysis of attenuation profiles. Acad Radiol 2008;15:222–230. DOI: 10.1016/j.acra.2007.09.007
57. Schroeder S., Kuettner A., Leitritz M. et al. Reliability of differentiating human coronary plaque morphology using contrast-enhanced multislice spiral computed tomography: a comparison with histology. J Comput Assist Tomogr 2004;28:449–454.
58. Gao D., Ning N., Guo Y. et al. Computed tomography for detecting coronary artery plaques: a meta-analysis. Atherosclerosis 2011;219:603–609. DOI: 10.1016/j.atherosclerosis.2011.08.022
59. Leber A.W., Becker A., Knez A. et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 2006;47:672–677. DOI: 10.1016/j.jacc.2005.10.058
60. Pohle K., Achenbach S., Macneill B. et al. Characterization of noncalcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis 2007;190:174–180. DOI: 10.1016/j.atherosclerosis.2006.01.013
61. Achenbach S. Can CT detect the vulnerable coronary plaque? Int J Cardiovasc Imaging 2008;24:311–312. DOI: 10.1007/s10554-007-9281-1
Для цитирования:
Ел Манаа Х.Э., Щекочихин Д.Ю., Шабанова М.С., Ломоносова А.А., Гогниева Д.Г., Терновой С.К., Шария М.А., Меситская Д.Ф., Копылов Ф.Ю., Сыркин А.Л. Возможности мультиспиральной компьютерной томографии в оценке атеросклеротического поражения коронарных артерий. Кардиология. 2019;59(2):24-31. https://doi.org/10.18087/cardio.2019.2.10214
For citation:
El Manaa H.E., Shchekochikhin D.Yu., Shabanova M.S., Lomonosova A.A., Gognieva D.G., Ternovoy S.K., Shariya M.A., Mesitskaya D.F., Kopylov P.Yu., Syrkin A.L. Multislice Computed Tomography Capabilities in Assessment of the Coronary Arteries Atherosclerotic Lesions. Kardiologiia. 2019;59(2):24-31. (In Russ.) https://doi.org/10.18087/cardio.2019.2.10214