Preview

Кардиология

Расширенный поиск

Ренин-ангиотензин-альдостероновая система как потенциальная мишень для терапии пациентов с кальцинирующим аортальным стенозом: обзор литературы

https://doi.org/10.18087/cardio.n328

Полный текст:

Аннотация

Кальцинирующий аортальный стеноз (КАС) представляет собой серьёзную социально-экономическую проблему в развитых странах, поскольку является наиболее частым показанием к протезированию аортального клапана. В настоящее время не существует методов неинвазивного лечения этого заболевания. Тем не менее, предполагается, что эффективная фармакотерапия КАС может быть разработана на основе модуляторов ренин-ангиотензин-альдостероновой системы (РААС), вовлечённой в патогенез этого заболевания. Целью настоящего обзора является обобщение и анализ современной информации о роли РААС в патофизиологии КАС, рассмотрение последних данных по эффективности ингибиторов РААС в лечении данного порока.

Об авторах

А. Е. Костюнин
ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
650002, Кемерово, Сосновый бульвар, 6


Е. А. Овчаренко
ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
650002, Кемерово, Сосновый бульвар, 6


О. Л. Барбараш
ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
650002, Кемерово, Сосновый бульвар, 6


Список литературы

1. Lindman BR, Clavel M-A, Mathieu P, Iung B, Lancellotti P, Otto CM et al. Calcific aortic stenosis. Nature Reviews Disease Primers. 2016;2(1):16006. DOI: 10.1038/nrdp.2016.6

2. Authors/Task Force Members, Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G et al. Guidelines on the management of valvular heart disease (version 2012). European Heart Journal. 2012;33(19):2451–96. DOI: 10.1093/eurheartj/ehs109

3. d’Arcy JL, Prendergast BD, Chambers JB, Ray SG, Bridgewater B. Valvular heart disease: the next cardiac epidemic. Heart. 2011;97(2):91–3. DOI: 10.1136/hrt.2010.205096

4. Iung B, Vahanian A. Degenerative calcific aortic stenosis: a natural history. Heart. 2012;98(Suppl 4):iv7–13. DOI: 10.1136/heartjnl-2012-302395

5. Osnabrugge RLJ, Mylotte D, Head SJ, Van Mieghem NM, Nkomo VT, LeReun CM et al. Aortic Stenosis in the Elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. Journal of the American College of Cardiology. 2013;62(11):1002–12. DOI: 10.1016/j.jacc.2013.05.015

6. Thaden JJ, Nkomo VT, Enriquez-Sarano M. The Global Burden of Aortic Stenosis. Progress in Cardiovascular Diseases. 2014;56(6):565–71. DOI: 10.1016/j.pcad.2014.02.006

7. Marquis-Gravel G, Redfors B, Leon MB, Généreux P. Medical Treatment of Aortic Stenosis. Circulation. 2016;134(22):1766–84. DOI: 10.1161/CIRCULATIONAHA.116.023997

8. Salas MJ, Santana O, Escolar E, Lamas GA. Medical Therapy for Calcific Aortic Stenosis. Journal of Cardiovascular Pharmacology and Therapeutics. 2012;17(2):133–8. DOI: 10.1177/1074248411416504

9. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. European Heart Journal. 2017;38(36):2739–91. DOI: 10.1093/eurheartj/ehx391

10. Lindman BR, Bonow RO, Otto CM. Current Management of Calcific Aortic Stenosis. Circulation Research. 2013;113(2):223–37. DOI: 10.1161/CIRCRESAHA.111.300084

11. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(25):e1159–95. DOI: 10.1161/CIR.0000000000000503

12. Гуляев Н. И., Варавин Н. А., Коровин А. Е., Кузнецов В. В., Яковлев В. В., Гордиенко А. В. Современные аспекты патогенеза кальциноза аортальных полулуний (обзор литературы). Вестник СПбГУ. 2016;3:20-34. DOI: 10.21638/11701/spbu11.2016.302

13. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The ReninAngiotensin-Aldosterone System in Vascular Inflammation and Remodeling. International Journal of Inflammation. 2014;2014:689360. DOI: 10.1155/2014/689360

14. Cao W, Hu N, Yuan Y, Cheng J, Guo X, Wang Y et al. Effects of Tilianin on Proliferation, Migration and TGF-β/Smad Signaling in Rat Vascular Smooth Muscle Cells Induced with Angiotensin II: Pharmacological effect of Talinin on rat vascular smooth muscle cells. Phytotherapy Research. 2017;31(8):1240–8. DOI: 10.1002/ptr.5846

15. Chen T, Li M, Fan X, Cheng J, Wang L. Sodium Tanshinone IIA Sulfonate Prevents Angiotensin II-Induced Differentiation of Human Atrial Fibroblasts into Myofibroblasts. Oxidative Medicine and Cellular Longevity. 2018;2018:6712585. DOI: 10.1155/2018/6712585

16. Wu X, Liu Y, An J, Li J, Lv W, Geng S et al. Piperlongumine inhibits angiotensin II-induced extracellular matrix expression in cardiac fibroblasts. Journal of Cellular Biochemistry. 2018;119(12):10358–64. DOI: 10.1002/jcb.27379

17. Barhoumi T, Fraulob-Aquino JC, Mian MOR, Ouerd S, IdrisKhodja N, Huo K-G et al. Matrix metalloproteinase-2 knockout prevents angiotensin II-induced vascular injury. Cardiovascular Research. 2017;113(14):1753–62. DOI: 10.1093/cvr/cvx115

18. Kong J, Zhang Y, Liu S, Li H, Liu S, Wang J et al. Melatonin attenuates angiotensin II-induced abdominal aortic aneurysm through the down-regulation of matrix metalloproteinases. Oncotarget. 2017;8(9):14283–93. DOI: 10.18632/oncotarget.15093

19. Guo F, Chen X-L, Wang F, Liang X, Sun Y-X, Wang Y-J. Role of Angiotensin II Type 1 Receptor in Angiotensin II-Induced Cytokine Production in Macrophages. Journal of Interferon & Cytokine Research. 2011;31(4):351–61. DOI: 10.1089/jir.2010.0073

20. Manuneedhi Cholan P, Cartland SP, Dang L, Rayner BS, Patel S, Thomas SR et al. TRAIL protects against endothelial dysfunction in vivo and inhibits angiotensin-II-induced oxidative stress in vascular endothelial cells in vitro. Free Radical Biology and Medicine. 2018;126:341–9. DOI: 10.1016/j.freeradbiomed.2018.08.031

21. Tian H, Yu D, Hu Y, Zhang P, Yang Y, Hu Q et al. Angiotensin II upregulates cyclophilin A by enhancing ROS production in rat cardiomyocytes. Molecular Medicine Reports. 2018;18(5):4349–55. DOI: 10.3892/mmr.2018.9448

22. Han C, Liu J, Liu X, Li M. Angiotensin II induces C-reactive protein expression through ERK1/2 and JNK signaling in human aortic endothelial cells. Atherosclerosis. 2010;212(1):206–12. DOI: 10.1016/j.atherosclerosis.2010.05.020

23. Ruiz-Ortega M, Ruperez M, Lorenzo O, Esteban V, Blanco J, Mezzano S et al. Angiotensin II regulates the synthesis of proinflam matory cytokines and chemokines in the kidney. Kidney International. 2002;82:S12–22. DOI: 10.1046/j.1523-1755.62.s82.4.x

24. Osako MK, Nakagami H, Shimamura M, Koriyama H, Nakagami F, Shimizu H et al. Cross-Talk of Receptor Activator of Nuclear Factor-κB Ligand Signaling With Renin–Angiotensin System in Vascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(6):1287–96. DOI: 10.1161/ATVBAHA.112.301099

25. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000;20(3):645–51. DOI: 10.1161/01.atv.20.3.645

26. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF et al. Hypertension. Nature Reviews Disease Primers. 2018;4(1):18014. DOI: 10.1038/nrdp.2018.14

27. Montecucco F, Pende A, Mach F. The Renin-Angiotensin System Modulates Inflammatory Processes in Atherosclerosis: Evidence from Basic Research and Clinical Studies. Mediators of Inflammation. 2009; 2009:752406. DOI: 10.1155/2009/752406

28. Sata M, Fukuda D. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. The Journal of Medical Investigation. 2010;57(1–2):12–25. DOI: 10.2152/jmi.57.12

29. George AJ, Thomas WG, Hannan RD. The renin–angiotensin system and cancer: old dog, new tricks. Nature Reviews Cancer. 2010;10(11):745–59. DOI: 10.1038/nrc2945

30. Ishikane S, Takahashi-Yanaga F. The role of angiotensin II in cancer metastasis: Potential of renin-angiotensin system blockade as a treatment for cancer metastasis. Biochemical Pharmacology. 2018; 151:96–103. DOI: 10.1016/j.bcp.2018.03.008

31. Chu KY, Leung PS. Angiotensin II in type 2 diabetes mellitus. Current Protein & Peptide Science. 2009;10(1):75–84. DOI: 10.2174/138920309787315176

32. Ribeiro-Oliveira AJr, Nogueira AI, Pereira RM, Boas WW, Dos Santos RA, Simões e Silva AC. The renin-angiotensin system and diabetes: An update. Vascular Health and Risk Management. 2008;4(4):787–803. DOI: 10.2147/VHRM.S1905

33. Remuzzi G, Perico N, Macia M, Ruggenenti P. The role of reninangiotensin-aldosterone system in the progression of chronic kidney disease. Kidney International. 2005;99:S57–65. DOI: 10.1111/j.1523-1755.2005.09911.x

34. Balakumar P, Jagadeesh G. A century old renin–angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cellular Signalling. 2014;26(10):2147–60. DOI: 10.1016/j.cellsig.2014.06.011

35. Peltonen T, Ohukainen P, Ruskoaho H, Rysä J. Targeting vasoactive peptides for managing calcific aortic valve disease. Annals of Medicine. 2017;49(1):63–74. DOI: 10.1080/07853890.2016.1231933

36. Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli. Pharmacological Reviews. 2015;67(4):754–819. DOI: 10.1124/pr.114.010454

37. Helske S, Lindstedt KA, Laine M, Mäyränpää M, Werkkala K, Lommi J et al. Induction of local angiotensin II-producing systems in stenotic aortic valves. Journal of the American College of Cardiology. 2004;44(9):1859–66. DOI: 10.1016/j.jacc.2004.07.054

38. Peltonen T, Näpänkangas J, Vuolteenaho O, Ohtonen P, Soini Y, Juvonen T et al. Apelin and its receptor APJ in human aortic valve stenosis. The Journal of Heart Valve Disease. 2009;18(6):644–52. PMID: 20099713

39. O’Brien KD, Shavelle DM, Caulfield MT, McDonald TO, OlinLewis K, Otto CM et al. Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation. 2002;106(17):2224–30. DOI: 10.1161/01.cir.0000035655.45453.d2

40. Li XC, Zhuo JL. Nuclear factor-κB as a hormonal intracellular signaling molecule: focus on angiotensin II-induced cardiovascular and renal injury: Current Opinion in Nephrology and Hypertension. 2008;17(1):37–43. DOI: 10.1097/MNH.0b013e3282f2903c

41. Zablocki D, Sadoshima J. Angiotensin II and Oxidative Stress in the Failing Heart. Antioxidants & Redox Signaling. 2013;19(10):1095–109. DOI: 10.1089/ars.2012.4588

42. Liberman M, Bassi E, Martinatti MK, Lario FC, Wosniak J, Pomerantzeff PMA et al. Oxidant Generation Predominates Around Calcifying Foci and Enhances Progression of Aortic Valve Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(3):463–70. DOI: 10.1161/ATVBAHA.107.156745

43. Miller JD, Chu Y, Brooks RM, Richenbacher WE, Peña-Silva R, Heistad DD. Dysregulation of Antioxidant Mechanisms Contributes to Increased Oxidative Stress in Calcific Aortic Valvular Stenosis in Humans. Journal of the American College of Cardiology. 2008;52(10):843–50. DOI: 10.1016/j.jacc.2008.05.043

44. Rajamannan N. Role of Oxidative Stress in Calcific Aortic Valve Disease: From Bench to Bedside - The Role of a Stem Cell Niche. In: Oxidative Stress and Chronic Degenerative Diseases - A Role for Antioxidants Morales-Gonzalez JA, editor -Croatia: InTech;2013.

45. Morgan MJ, Liu Z. Reactive oxygen species in TNFα-induced signaling and cell death. Molecules and Cells. 2010;30(1):1–12. DOI: 10.1007/s10059-010-0105-0

46. Belhadj Slimen I, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. International Journal of Hyperthermia. 2014;30(7):513–23. DOI: 10.3109/02656736.2014.971446

47. Xie C, Shen Y, Hu W, Chen Z, Li Y. Angiotensin II promotes an osteoblast-like phenotype in porcine aortic valve myofibroblasts. Aging Clinical and Experimental Research. 2016;28(2):181–7. DOI: 10.1007/s40520-015-0408-2

48. Fujisaka T, Hoshiga M, Hotchi J, Takeda Y, Jin D, Takai S et al. Angiotensin II promotes aortic valve thickening independent of elevated blood pressure in apolipoprotein-E deficient mice. Atherosclerosis. 2013;226(1):82–7. DOI: 10.1016/j.atherosclerosis.2012.10.055

49. Arishiro K, Hoshiga M, Negoro N, Jin D, Takai S, Miyazaki M et al. Angiotensin Receptor-1 Blocker Inhibits Atherosclerotic Changes and Endothelial Disruption of the Aortic Valve in Hypercholesterolemic Rabbits. Journal of the American College of Cardiology. 2007;49(13):1482–9. DOI: 10.1016/j.jacc.2006.11.043

50. Masuda C, Dohi K, Sakurai Y, Bessho Y, Fukuda H, Fujii S et al. Impact of Chronic Kidney Disease on the Presence and Severity of Aortic Stenosis in Patients at High Risk for Coronary Artery Disease. Cardiovascular Ultrasound. 2011;9(1):31. DOI: 10.1186/1476-7120-9-31

51. Rieck ÅE, Cramariuc D, Boman K, Gohlke-Bärwolf C, Staal EM, Lønnebakken MT et al. Hypertension in Aortic Stenosis: Implications for Left Ventricular Structure and Cardiovascular Events. Hypertension. 2012;60(1):90–7. DOI: 10.1161/HYPERTENSIONAHA.112.194878

52. Perkovic V, Hunt D, Griffin SV, du Plessis M, Becker GJ. Accelerated Progression of Calcific Aortic Stenosis in Dialysis Patients. Nephron Clinical Practice. 2004;94(2):c40–5. DOI: 10.1159/000071280

53. Tastet L, Capoulade R, Clavel M-A, Larose É, Shen M, Dahou A et al. Systolic hypertension and progression of aortic valve calcification in patients with aortic stenosis: results from the PROGRESSA study. European Heart Journal – Cardiovascular Imaging. 2017;18(1):70–8. DOI: 10.1093/ehjci/jew013

54. Liakos CI, Grassos CA, Papadopoulos DP, Dimitriadis KS, Tsioufis CP, Tousoulis D. Arterial hypertension and aortic valve stenosis: Shedding light on a common “liaison”. Hellenic Journal of Cardiology. 2017;58(4):261–6. DOI: 10.1016/j.hjc.2017.03.005

55. Dweck MR, Boon NA, Newby DE. Calcific Aortic Stenosis: a disease of the valve and the myocardium. Journal of the American College of Cardiology. 2012;60(19):1854–63. DOI: 10.1016/j.jacc.2012.02.093

56. Rattazzi M, Bertacco E, Del Vecchio A, Puato M, Faggin E, Pauletto P. Aortic valve calcification in chronic kidney disease. Nephrology Dialysis Transplantation. 2013;28(12):2968–76. DOI: 10.1093/ndt/gft310

57. Ahmad S, Varagic J, VonCannon JL, Groban L, Collawn JF, Dell’Italia LJ et al. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Biochemical and Biophysical Research Communications. 2016;478(2):559–64. DOI: 10.1016/j.bbrc.2016.07.100

58. Nagata S, Hatakeyama K, Asami M, Tokashiki M, Hibino H, Nishiuchi Y et al. Big angiotensin-25: A novel glycosylated angiotensin-related peptide isolated from human urine. Biochemical and Biophysical Research Communications. 2013;441(4):757–62. DOI: 10.1016/j.bbrc.2013.10.124

59. Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K. Isolation and identification of proangiotensin-12, a possible component of the renin–angiotensin system. Biochemical and Biophysical Research Communications. 2006;350(4):1026–31. DOI: 10.1016/j.bbrc.2006.09.146

60. Ahmad S, Simmons T, Varagic J, Moniwa N, Chappell MC, Ferrario CM. Chymase-Dependent Generation of Angiotensin II from Angiotensin-(1-12) in Human Atrial Tissue. PLoS ONE. 2011;6(12):e28501. DOI: 10.1371/journal.pone.0028501

61. Ahmad S, Wei C-C, Tallaj J, Dell’Italia LJ, Moniwa N, Varagic J et al. Chymase mediates angiotensin-(1-12) metabolism in normal human hearts. Journal of the American Society of Hypertension. 2013;7(2):128–36. DOI: 10.1016/j.jash.2012.12.003

62. Helske S, Syväranta S, Kupari M, Lappalainen J, Laine M, Lommi J et al. Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. European Heart Journal. 2006;27(12):1495–504. DOI: 10.1093/eurheartj/ehi706

63. Coté N, Mahmut A, Bosse Y, Couture C, Pagé S, Trahan S et al. Inflammation Is Associated with the Remodeling of Calcific Aortic Valve Disease. Inflammation. 2013;36(3):573–81. DOI: 10.1007/s10753-012-9579-6

64. Šteiner I, Krbal L, Rozkoš T, Harrer J, Laco J. Calcific aortic valve stenosis: Immunohistochemical analysis of inflammatory infiltrate. Pathology - Research and Practice. 2012;208(4):231–4. DOI: 10.1016/j.prp.2012.02.009

65. Šteiner I, Stejskal V, Žáček P. Mast cells in calcific aortic stenosis. Pathology – Research and Practice. 2018;214(1):163–8. DOI: 10.1016/j.prp.2017.07.016

66. O’Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 1996;16(4):523–32. DOI: 10.1161/01.atv.16.4.523

67. Olsson M, Thyberg J, Nilsson J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arteriosclerosis, Thrombosis, and Vascular Biology. 1999;19(5):1218–22. DOI: 10.1161/01.atv.19.5.1218

68. Parisi V, Leosco D, Ferro G, Bevilacqua A, Pagano G, de Lucia C et al. The lipid theory in the pathogenesis of calcific aortic stenosis. Nutrition, Metabolism and Cardiovascular Diseases. 2015;25(6):519–25. DOI: 10.1016/j.numecd.2015.02.001

69. Mohty D, Pibarot P, Després J-P, Côté C, Arsenault B, Cartier A et al. Association Between Plasma LDL Particle Size, Valvular Accumulation of Oxidized LDL, and Inflammation in Patients with Aortic Stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(1):187–93. DOI: 10.1161/ATVBAHA.107.154989

70. Tiede K, Stöter K, Petrik C, Chen WB, Ungefroren H, Kruse ML et al. Angiotensin II AT(1)-receptor induces biglycan in neonatal cardiac fibroblasts via autocrine release of TGFbeta in vitro. Cardiovascular Research. 2003;60(3):538–46. DOI: 10.1016/j.cardiores.2003.08.009

71. Neufeld EB, Zadrozny LM, Phillips D, Aponte A, Yu Z-X, Balaban RS. Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix. Atherosclerosis. 2014;233(1):113–21. DOI: 10.1016/j.atherosclerosis.2013.12.038

72. Osman N, Grande-Allen KJ, Ballinger ML, Getachew R, Marasco S, O’Brien KD et al. Smad2-dependent glycosaminoglycan elongation in aortic valve interstitial cells enhances binding of LDL to proteoglycans. Cardiovascular Pathology. 2013;22(2):146–55. DOI: 10.1016/j.carpath.2012.07.002

73. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research. 2000;87(5):E1-9. DOI: 10.1161/01.res.87.5.e1

74. Ferreira AJ, Santos RAS, Bradford CN, Mecca AP, Sumners C, Katovich MJ et al. Therapeutic Implications of the Vasoprotective Axis of the Renin-Angiotensin System in Cardiovascular Diseases. Hypertension. 2010;55(2):207–13. DOI: 10.1161/HYPERTENSIONAHA.109.140145

75. Iwai M, Horiuchi M. Devil and angel in the renin–angiotensin system: ACE–angiotensin II–AT1 receptor axis vs. ACE2–angiotensin-(1–7)–Mas receptor axis. Hypertension Research. 2009;32(7):533–6. DOI: 10.1038/hr.2009.74

76. Alenina N, Xu P, Rentzsch B, Patkin EL, Bader M. Genetically altered animal models for Mas and angiotensin-(1-7): Transgenic animal models for Mas and angiotensin-(1-7). Experimental Physiology. 2008;93(5):528–37. DOI: 10.1113/expphysiol.2007.040345

77. Kassiri Z, Zhong J, Guo D, Basu R, Wang X, Liu PP et al. Loss of Angiotensin-Converting Enzyme 2 Accelerates Maladaptive Left Ventricular Remodeling in Response to Myocardial Infarction. Circulation: Heart Failure. 2009;2(5):446–55. DOI: 10.1161/CIRCHEARTFAILURE.108.840124

78. Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M et al. Angiotensin-Converting Enzyme 2 Suppresses Pathological Hypertrophy, Myocardial Fibrosis, and Cardiac Dysfunction. Circulation. 2010;122(7):717–28. DOI: 10.1161/CIRCULATIONAHA.110.955369

79. Trask AJ, Groban L, Westwood BM, Varagic J, Ganten D, Gallagher PE et al. Inhibition of Angiotensin-Converting Enzyme 2 Exacerbates Cardiac Hypertrophy and Fibrosis in Ren-2 Hypertensive Rats. American Journal of Hypertension. 2010;23(6):687–93. DOI: 10.1038/ajh.2010.51

80. Peltonen T, Näpänkangas J, Ohtonen P, Aro J, Peltonen J, Soini Y et al. (Pro)renin receptors and angiotensin converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in human aortic valve stenosis. Atherosclerosis. 2011;216(1):35–43. DOI: 10.1016/j.atherosclerosis.2011.01.018

81. Collister JP, Nahey DB. Simultaneous administration of Ang(1-7) or A-779 does not affect the chronic hypertensive effects of angiotensin II in normal rats. Journal of the Renin-Angiotensin-Aldosterone System. 2010;11(2):99–102. DOI: 10.1177/1470320309359928

82. Velkoska E, Dean RG, Griggs K, Burchill L, Burrell LM. Angiotensin-(1–7) infusion is associated with increased blood pressure and adverse cardiac remodelling in rats with subtotal nephrectomy. Clinical Science. 2011;120(8):335–45. DOI: 10.1042/CS20100280

83. Shao Y, He M, Zhou L, Yao T, Huang Y, Lu L. Chronic angiotensin (17) injection accelerates STZ-induced diabetic renal injury 1. Acta Pharmacologica Sinica. 2008;29(7):829–37. DOI: 10.1111/j.1745-7254.2008.00812.x

84. Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, Azocar A, Castro PF, Jalil JE et al. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Therapeutic Advances in Cardiovascular Disease. 2015;9(4):217–37. DOI: 10.1177/1753944715597623

85. Westermeier F, Bustamante M, Pavez M, García L, Chiong M, Ocaranza MP et al. Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacological Research. 2015;101:41–55. DOI: 10.1016/j.phrs.2015.06.018

86. Ocaranza MP, Lavandero S, Jalil JE, Moya J, Pinto M, Novoa U et al. Angiotensin-(1–9) regulates cardiac hypertrophy in vivo and in vitro. Journal of Hypertension. 2010;28(5):1054–64. DOI: 10.1097/HJH.0b013e328335d291

87. Ocaranza MP, Moya J, Barrientos V, Alzamora R, Hevia D, Morales C et al. Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis: Journal of Hypertension. 2014;32(4):771–83. DOI: 10.1097/HJH.0000000000000094

88. Zheng H, Pu S-Y, Fan X-F, Li X-S, Zhang Y, Yuan J et al. Treatment with angiotensin-(1-9) alleviates the cardiomyopathy in streptozotocin-induced diabetic rats. Biochemical Pharmacology. 2015;95(1):38–45. DOI: 10.1016/j.bcp.2015.03.009

89. Cha SAh, Park BM, Gao S, Kim SH. Stimulation of ANP by angiotensin-(1-9) via the angiotensin type 2 receptor. Life Sciences. 2013;93(24):934–40. DOI: 10.1016/j.lfs.2013.10.020

90. Flores-Munoz M, Work LM, Douglas K, Denby L, Dominiczak AF, Graham D et al. Angiotensin-(1-9) Attenuates Cardiac Fibrosis in the Stroke-Prone Spontaneously Hypertensive Rat via the Angiotensin Type 2 Receptor. Hypertension. 2012;59(2):300–7. DOI: 10.1161/HYPERTENSIONAHA.111.177485

91. Yu L, Yuan K, Phuong HTA, Park BM, Kim SH. Angiotensin-(1-5), an active mediator of renin-angiotensin system, stimulates ANP secretion via Mas receptor. Peptides. 2016;86:33–41. DOI: 10.1016/j.peptides.2016.09.009

92. Hrenak J, Paulis L, Simko F. Angiotensin A/Alamandine/MrgD Axis: Another Clue to Understanding Cardiovascular Pathophysiology. International Journal of Molecular Sciences. 2016;17(7):1098. DOI: 10.3390/ijms17071098

93. Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, CostaFraga F et al. Discovery and Characterization of Alamandine: A Novel Component of the Renin–Angiotensin System. Circulation Research. 2013;112(8):1104–11. DOI: 10.1161/CIRCRESAHA.113.301077

94. Villela DC, Passos-Silva DG, Santos RAS. Alamandine: a new member of the angiotensin family. Current Opinion in Nephrology and Hypertension. 2014;23(2):130–4. DOI: 10.1097/01.mnh.0000441052.44406.92

95. Habiyakare B, Alsaadon H, Mathai ML, Hayes A, Zulli A. Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: differential effects of alamandine and Ang(1-7). International Journal of Experimental Pathology. 2014;95(4):290–5. DOI: 10.1111/iep.12087

96. Jankowski V, Tölle M, Santos RAS, Günthner T, Krause E, Beyermann M et al. Angioprotectin: an angiotensin II-like peptide causing vasodilatory effects. The FASEB Journal. 2011;25(9):2987–95. DOI: 10.1096/fj.11-185470

97. Jankowski V, Vanholder R, van der Giet M, Tölle M, Karadogan S, Gobom J et al. Mass-Spectrometric Identification of a Novel Angiotensin Peptide in Human Plasma. Arteriosclerosis, Thrombosis, and Vascular Biology. 2007;27(2):297–302. DOI: 10.1161/01.ATV.0000253889.09765.5f

98. Yang R, Smolders I, Vanderheyden P, Demaegdt H, Van Eeckhaut A, Vauquelin G et al. Pressor and Renal Hemodynamic Effects of the Novel Angiotensin A Peptide Are Angiotensin II Type 1A Receptor Dependent. Hypertension. 2011;57(5):956–64. DOI: 10.1161/HYPERTENSIONAHA.110.161836

99. Coutinho DC, Foureaux G, Rodrigues KD, Salles RL, Moraes PL, Murça TM et al. Cardiovascular effects of angiotensin A: A novel peptide of the renin–angiotensin system. Journal of the ReninAngiotensin-Aldosterone System. 2014;15(4):480–6. DOI: 10.1177/1470320312474856

100. Ngo DT, Stafford I, Sverdlov AL, Qi W, Wuttke RD, Zhang Y et al. Ramipril retards development of aortic valve stenosis in a rabbit model: mechanistic considerations: Ramipril retards development of aortic valve stenosis. British Journal of Pharmacology. 2011;162(3):722–32. DOI: 10.1111/j.1476-5381.2010.01084.x

101. Simolin MA, Pedersen TX, Bro S, Mäyränpää MI, Helske S, Nielsen LB et al. ACE inhibition attenuates uremia-induced aortic valve thickening in a novel mouse model. BMC Cardiovascular Disorders. 2009;9(1):10. DOI: 10.1186/1471-2261-9-10

102. Bull S, Loudon M, Francis JM, Joseph J, Gerry S, Karamitsos TD et al. A prospective, double-blind, randomized controlled trial of the angiotensin-converting enzyme inhibitor Ramipril In Aortic Stenosis (RIAS trial). European Heart Journal – Cardiovascular Imaging. 2015;16(8):834–41. DOI: 10.1093/ehjci/jev043

103. Chockalingam A, Venkatesan S, Subramaniam T, Jagannathan V, Elangovan S, Alagesan R et al. Safety and efficacy of angiotensin-converting enzyme inhibitors in symptomatic severe aortic stenosis: symptomatic cardiac obstruction–pilot study of enalapril in aortic stenosis (SCOPE-AS). American Heart Journal. 2004;147(4):740. DOI: 10.1016/j.ahj.2003.10.017

104. Dalsgaard M, Iversen K, Kjaergaard J, Grande P, Goetze JP, Clemmensen P et al. Short-term hemodynamic effect of angiotensin-converting enzyme inhibition in patients with severe aortic stenosis. American Heart Journal. 2014;167(2):226–34. DOI: 10.1016/j.ahj.2013.11.002

105. Capoulade R, Clavel M-A, Mathieu P, Côté N, Dumesnil JG, Arsenault M et al. Impact of hypertension and renin-angiotensin system inhibitors in aortic stenosis. European Journal of Clinical Investigation. 2013;43(12):1262–72. DOI: 10.1111/eci.12169

106. Côté N, Couture C, Pibarot P, Després J-P, Mathieu P. Angiotensin receptor blockers are associated with a lower remodelling score of stenotic aortic valves. European Journal of Clinical Investigation. 2011;41(11):1172–9. DOI: 10.1111/j.1365-2362.2011.02522.x

107. Yamamoto K, Yamamoto H, Yoshida K, Kisanuki A, Hirano Y, Ohte N et al. Prognostic factors for progression of early- and late-stage calcific aortic valve disease in Japanese: The Japanese Aortic Stenosis Study (JASS) Retrospective Analysis. Hypertension Research. 2010;33(3):269–74. DOI: 10.1038/hr.2009.225

108. Rosenhek R, Rader F, Loho N, Gabriel H, Heger M, Klaar U et al. Statins but Not Angiotensin-Converting Enzyme Inhibitors Delay Progression of Aortic Stenosis. Circulation. 2004;110(10):1291–5. DOI: 10.1161/01.CIR.0000140723.15274.53

109. O’Brien KD, Probstfield JL, Caulfield MT, Nasir K, Takasu J, Shavelle DM et al. Angiotensin-Converting Enzyme Inhibitors and Change in Aortic Valve Calcium. Archives of Internal Medicine. 2005;165(8):858–62. DOI: 10.1001/archinte.165.8.858

110. Nadir MA, Wei L, Elder DHJ, Libianto R, Lim TK, Pauriah M et al. Impact of Renin-Angiotensin System Blockade Therapy on Outcome in Aortic Stenosis. Journal of the American College of Cardiology. 2011;58(6):570–6. DOI: 10.1016/j.jacc.2011.01.063

111. Chen J-H, Simmons CA. Cell–Matrix Interactions in the Pathobiology of Calcific Aortic Valve Disease: Critical Roles for Matricellular, Matricrine, and Matrix Mechanics Cues. Circulation Research. 2011;108(12):1510–24. DOI: 10.1161/CIRCRESAHA.110.234237

112. Yip CYY, Simmons CA. The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovascular Pathology. 2011;20(3):177–82. DOI: 10.1016/j.carpath.2010.12.001

113. Balachandran K, Sucosky P, Jo H, Yoganathan AP. Elevated Cyclic Stretch Induces Aortic Valve Calcification in a Bone Morphogenic ProteinDependent Manner. The American Journal of Pathology. 2010;177(1):49–57. DOI: 10.2353/ajpath.2010.090631

114. Helske-Suihko S, Laine M, Lommi J, Kaartinen M, Werkkala K, Kovanen PT et al. Is Blockade of the Renin-angiotensin System Able to Reverse the Structural and Functional Remodeling of the Left Ventricle in Severe Aortic Stenosis? Journal of Cardiovascular Pharmacology. 2015;65(3):233–40. DOI: 10.1097/FJC.0000000000000182

115. Bang CN, Greve AM, Køber L, Rossebø AB, Ray S, Boman K et al. Renin–angiotensin system inhibition is not associated with increased sudden cardiac death, cardiovascular mortality or all-cause mortality in patients with aortic stenosis. International Journal of Cardiology. 2014;175(3):492–8. DOI: 10.1016/j.ijcard.2014.06.013

116. Dell’Italia LJ, Collawn JF, Ferrario CM. Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circulation Research. 2018;122(2):319–36. DOI: 10.1161/CIRCRESAHA.117.310978

117. Ahmad S, Ferrario CM. Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010–2018). Expert Opinion on Therapeutic Patents. 2018;28(11):755–64. DOI: 10.1080/13543776.2018.1531848

118. Nguyen G, Muller DN. The Biology of the (Pro)Renin Receptor. Journal of the American Society of Nephrology. 2010;21(1):18–23. DOI: 10.1681/ASN.2009030300

119. Cruciat C-M, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D et al. Requirement of Prorenin Receptor and Vacuolar H+-ATPase-Mediated Acidification for Wnt Signaling. Science. 2010;327(5964):459–63. DOI: 10.1126/science.1179802


Для цитирования:


Костюнин А.Е., Овчаренко Е.А., Барбараш О.Л. Ренин-ангиотензин-альдостероновая система как потенциальная мишень для терапии пациентов с кальцинирующим аортальным стенозом: обзор литературы. Кардиология. 2019;59(11S):4-17. https://doi.org/10.18087/cardio.n328

For citation:


Kostyunin A.E., Ovcharenko E.A., Barbarash O.L. The renin-angiotensin-aldosterone system as a potential target for therapy in patients with calcific aortic stenosis: a literature review. Kardiologiia. 2019;59(11S):4-17. (In Russ.) https://doi.org/10.18087/cardio.n328

Просмотров: 439


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)