Влияние тренировок в воде на состояние сердечно-сосудистой системы у пациентов с сахарным диабетом 2 типа: систематический обзор и метаанализ
https://doi.org/10.18087/cardio.2021.9.n1729
Аннотация
Цель Провести систематический обзор и мета-анализ данных исследований, изучавших влияние тренировок в воде (ВТ) на здоровье сердечно-сосудистой системы у пациентов с сахарным диабетом 2 типа (СД2).
Материал и методы Поиск публикаций по исследованиям, изучавшим тренировки в воде у пациентов с СД2 проводился в базах данных PubMed, Cochrane, EMBASE, Web of Science и Ovid за период до 25 мая 2021 г. Основными анализируемыми параметрами были тест 6-минутной ходьбы (Т6МХ) и максимальное потребление кислорода (VO2max). Вторичными конечными точками были частота сердечных сокращений (ЧСС), систолическое (САД) и диастолическое (ДАД) артериальное давление в покое.
Результаты Было отобрано 12 исследований, включивших 320 участников. Среди них в трех исследованиях ВТ сравнивались с упражнениями в зале, шесть исследований сравнивали ВТ с контролем без вмешательства и три исследования сравнивали результат до/после ВТ без контрольной группы. Мета-анализ показал, что по сравнению с исходным уровнем после тренировок в воде (исследования до/после) VO2max увеличился (взвешенная разница средних (ВРС)=0,71, 95% ДИ 0,47; 0,94), в то время как ЧСС покоя, САД покоя и ДАД покоя снижались (ВРС=-5,88, 95% ДИ -6,88;-4,88; ВРС=-5,76, 95% ДИ 7,75;-3,78; ВРС=-2,48, 95% ДИ -3,83;-1,13). При сравнении ВТ с группой контроля, дистанция Т6МХ и VO2max увеличились (ВРС=127,00, 95% 95%ДИ 49,26; 204,74; ВРС=2,02, 95% ДИ 1,66; 2,38, соответственно) и ЧСС покоя снизились (ВРС=-4,20, 95% ДИ -6,36; -2,03, ВТ по сравнению с контролем). Достоверных различий по указанным выше показателям между ВТ и тренировками в зале не выявлено.
Выводы ВТ как и тренировки на суше увеличивают VO2max и снижают ЧСС покоя, САД и ДАД покоя. Динамика этих показателей говорит о положительном влиянии ВТ на состояние сердечно-сосудистой системы у пациентов с СД2. Однако необходимы дополнительные данные, чтобы подтвердить влияние ВТ на результаты Т6МХ у пациентов с СД2.
Об авторах
Хайфэн ЧжуКитай
лечащий врач
Цзин Цзинь
Китай
заместитель главного врача
Гаонян Чжао
Китай
главный врач
Список литературы
1. Charlton A, Garzarella J, Jandeleit-Dahm KAM, Jha JC. Oxidative Stress and Inflammation in Renal and Cardiovascular Complications of Diabetes. Biology. 2020;10(1):18. DOI: 10.3390/biology10010018
2. Schüttler D, Clauss S, Weckbach LT, Brunner S. Molecular Mechanisms of Cardiac Remodeling and Regeneration in Physical Exercise. Cells. 2019;8(10):1128. DOI: 10.3390/cells8101128
3. Pendergast DR, Moon RE, Krasney JJ, Held HE, Zamparo P. Human Physiology in an Aquatic Environment. Comprehensive Physiology. 2015;5(4):1705–50. DOI: 10.1002/cphy.c140018
4. Sola M, Allison M, Cusick M, Franek M, Murray M, Clewley D. Bio-mechanical and Physiological Effects of Shallow Water Gait in Healthy Adults: A Systematic Review. The Journal of Aquatic Physical Therapy. 2018;26(3):2–16
5. Louder TJ, Bressel E, Nardoni C, Dolny DG. Biomechanical Comparison of Loaded Countermovement Jumps Performed on Land and in Water. Journal of Strength and Conditioning Research. 2019;33(1):25–35. DOI: 10.1519/JSC.0000000000001900
6. Kutzner I, Richter A, Gordt K, Dymke J, Damm P, Duda GN et al. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants. PLOS ONE. 2017;12(3):e0171972. DOI: 10.1371/journal.pone.0171972
7. Jurado-Lavanant A, Alvero-Cruz J, Pareja-Blanco F, Melero-Romero C, Rodríguez-Rosell D, Fernandez-Garcia J. The Effects of Aquatic Plyometric Training on Repeated Jumps, Drop Jumps and Muscle Damage. International Journal of Sports Medicine. 2018;39(10):764–72. DOI: 10.1055/s-0034-1398574
8. Meredith-Jones K, Waters D, Legge M, Jones L. Upright water-based exercise to improve cardiovascular and metabolic health: A qualitative review. Complementary Therapies in Medicine. 2011;19(2):93–103. DOI: 10.1016/j.ctim.2011.02.002
9. Chagas EFB, Cruz AC, Rodrigues PH, Silva CS, Quitério RJ. Aquatic exercise and cardiac autonomic modulation of postmenopausal women with type 2 diabetes. Revista Brasileira de Fisiologia do Exercício. 2020;19(2):82–94. DOI: 10.33233/rbfe.v19i2.3120
10. Conners RT, Morgan DW, Fuller DK, Caputo JL. Underwater Treadmill Training, Glycemic Control, and Health-Related Fitness in Adults with Type 2 Diabetes. International Journal of Aquatic Research and Education. 2014;8(4):382. DOI: 10.25035/ijare.08.04.08
11. Conners RT, Caputo JL, Coons JM, Fuller DK, Morgan DW. Impact of Underwater Treadmill Training on Glycemic Control, Blood Lipids, and Health-Related Fitness in Adults with Type 2 Diabetes. Clinical Diabetes. 2019;37(1):36–43. DOI: 10.2337/cd17-0066
12. Cugusi L, Cadeddu C, Nocco S, Orrù F, Bandino S, Deidda M et al. Effects of an Aquatic-Based Exercise Program to Improve Cardiometabolic Profile, Quality of Life, and Physical Activity Levels in Men with Type 2 Diabetes Mellitus. PM&R. 2015;7(2):141–8. DOI: 10.1016/j.pmrj.2014.09.004
13. Delevatti RS, Kanitz AC, Alberton CL, Marson EC, Lisboa SC, Pin-ho CDF et al. Glucose control can be similarly improved aſter aquatic or dry-land aerobic training in patients with type 2 diabetes: A randomized clinical trial. Journal of Science and Medicine in Sport. 2016;19(8):688–93. DOI: 10.1016/j.jsams.2015.10.008
14. Delevatti RS, Kanitz AC, Bracht CG, Lisboa SDC, Marson EC, Reichert T et al. Effects of 2 Models of Aquatic Exercise Training on Cardiorespiratory Responses of Patients with Type 2 Diabetes: The Diabetes and Aquatic Training Study – A Randomized Controlled Trial. Journal of Physical Activity and Health. 2020;17(11):1091–9. DOI: 10.1123/jpah.2020-0236
15. Johnson ST, Mundt C, Qiu W, Boulé N, Jorgensen L, Bell G et al. Changes in Functional Status Aſter Aquatic Exercise in Adults with Type 2 Diabetes and Arthritis: A Pilot Study. Activities, Adaptation and Aging. 2018;43(1):1–11. DOI: 10.1080/01924788.2018.1493890
16. Nuttamonwarakul A, Amatyakul S, Suksom D. Twelve Weeks of Aqua-Aerobic Exercise Improve Health-Related Physical Fitness and Glycemic Control in Elderly Patients with Type 2 Diabetes. Journal of Exercise Physiology. 2012;15(2):64–70. [Av. at: https://www.asep.org/asep/asep/JEPonlineAPRIL2012_A_Nuttamonwarakul.pdf]
17. Nuttamonwarakul A, Amatyakul S, Suksom D. Effects of water-based versus land-based exercise training on cutaneous microvascular reactivity and C-reactive protein in older women with type 2 diabetes mellitus. Journal of Exercise Physiology. 2014;17(4):27–33. [Av. at: https://www.asep.org/asep/asep/JEPonlineAUGUST2014_Suksom.pdf]
18. Rezaeimanesh D, Amiri-Farsani P. The effect of an 8-week selected aquatic aerobic training period on plasma Leptin and insulin resistance in men with type 2 diabetes. Journal of advanced pharmacy education and research. 2019;9(Suppl 2):121–4. [Av. at: https://www.researchgate.net/publication/336287935_The_effect_of_an_8-week_selected_aquatic_aerobic_training_period_on_plasma_Leptin_and_insulin_resistance_in_men_with_type_2_diabetes]
19. Scheer AS, Naylor LH, Gan SK, Charlesworth J, Benjanuvatra N, Green DJ et al. The Effects of Water-based Exercise Training in People with Type 2 Diabetes. Medicine & Science in Sports & Exercise. 2020;52(2):417–24. DOI: 10.1249/MSS.0000000000002133
20. Suntraluck S, Tanaka H, Suksom D. The Relative Efficacy of Land-Based and Water-Based Exercise Training on Macro- and Microvascular Functions in Older Patients with Type 2 Diabetes. Journal of Aging and Physical Activity. 2017;25(3):446–52. DOI: 10.1123/japa.2016-0193
21. Woo J, Yau F, Leung J, Chan R. Peak oxygen uptake, six-minute walk distance, six-meter walk speed, and pulse pressure as predictors of seven year all-cause and cardiovascular mortality in community-living older adults. Experimental Gerontology. 2019;124: 110645. DOI: 10.1016/j.exger.2019.110645
22. Peng X, Su Y, Hu Z, Sun X, Li X, Dolansky MA et al. Home-based telehealth exercise training program in Chinese patients with heart failure: A randomized controlled trial. Medicine. 2018;97(35): e12069. DOI: 10.1097/MD.0000000000012069
23. Bidonde J, Busch AJ, Webber SC, Schachter CL, Danyliw A, Over-end TJ et al. Aquatic exercise training for fibromyalgia. Cochrane Database of Systematic Reviews. 2014;10:CD011336. DOI: 10.1002/14651858.CD011336
24. Adsett J, Morris N, Kuys S, Hwang R, Mullins R, Khatun M et al. Aquatic Exercise Training is Effective in Maintaining Exercise Performance in Trained Heart Failure Patients: A Randomised Crossover Pilot Trial. Heart, Lung and Circulation. 2017;26(6):572–9. DOI: 10.1016/j.hlc.2016.10.017
25. Zoheiry IM, Ashem HN, Hamada Ahmed HA, Abbas R. Effect of aquatic versus land based exercise programs on physical performance in severely burned patients: a randomized controlled trial. Journal of Physical Therapy Science. 2017;29(12):2201–5. DOI: 10.1589/jpts.29.2201
26. Han EY, Im SH. Effects of a 6-Week Aquatic Treadmill Exercise Program on Cardiorespiratory Fitness and Walking Endurance in Sub-acute Stroke Patients: A PILOT TRIAL. Journal of Cardiopulmonary Rehabilitation and Prevention. 2018;38(5):314–9. DOI: 10.1097/HCR.0000000000000243
27. Åsa C, Maria S, Katharina SS, Bert A. Aquatic Exercise Is Effective in Improving Exercise Performance in Patients with Heart Failure and Type 2 Diabetes Mellitus. Evidence-Based Complementary and Alternative Medicine. 2012; 2012:349209. DOI: 10.1155/2012/349209
28. Rossi JM, Tebexreni AS, Alves ANF, Abreu FB, Nishio PA, Thomazi MC et al. VO2max-Based Physical Fitness Categories in a Brazilian Population with Supposed High Socioeconomic Status and without Structural Heart Disease. Arquivos Brasileiros de Cardiologia. 2020;115(3):468–77. DOI: 10.36660/abc.20190189
29. Gwoździński K, Pieniążek A, Czepas J, Brzeszczyńska J, Jegier A, Pawlicki L. Cardiac rehabilitation improves the blood plasma properties of cardiac patients. Experimental Biology and Medicine. 2016;241(17):1997–2006. DOI: 10.1177/1535370216658143
30. Wen D, Utesch T, Wu J, Robertson S, Liu J, Hu G et al. Effects of different protocols of high intensity interval training for VO2max improvements in adults: A meta-analysis of randomised controlled trials. Journal of Science and Medicine in Sport. 2019;22(8):941–7. DOI: 10.1016/j.jsams.2019.01.013
31. Agostoni E, Gurtner G, Torri G, Rahn H. Respiratory mechanics during submersion and negative-pressure breathing. Journal of Applied Physiology. 1966;21(1):251–8. DOI: 10.1152/jappl.1966.21.1.251
32. Sloth M, Sloth D, Overgaard K, Dalgas U. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scandinavian Journal of Medicine & Science in Sports. 2013;23(6): e341–52. DOI: 10.1111/sms.12092
33. Seravalle G, Grassi G. Heart rate as cardiovascular risk factor. Postgraduate Medicine. 2020;132(4):358–67. DOI: 10.1080/00325481.2020.1738142
34. Kwon O, Park S, Kim Y-J, Min S-Y, Kim YR, Nam G-B et al. The exercise heart rate profile in master athletes compared to healthy controls. Clinical Physiology and Functional Imaging. 2016;36(4):286–92. DOI: 10.1111/cpf.12226
35. Denning WM, Bressel E, Dolny D, Bressel M, Seeley MK. A Review of Biophysical Differences between Aquatic and Land-Based Exercise. International Journal of Aquatic Research and Education. 2012;6(1):46–67. DOI: 10.25035/ijare.06.01.07
36. Fuchs FD, Whelton PK. High Blood Pressure and Cardiovascular Disease. Hypertension. 2020;75(2):285–92. DOI: 10.1161/HYPERTENSIONAHA.119.14240
37. Bacon SL, Sherwood A, Hinderliter A, Blumenthal JA. Effects of Exercise, Diet and Weight Loss on High Blood Pressure. Sports Medicine. 2004;34(5):307–16. DOI: 10.2165/00007256-200434050-00003
38. Júnior F, Gomes SG, da Silva FF, Souza PM, Oliveira EC, Coelho DB et al. The effects of aquatic and land exercise on resting blood pressure and post-exercise hypotension response in elderly hypertensives. Cardiovascular Journal of Africa. 2020;31(3):116–22. DOI: 10.5830/CVJA-2019-051
39. Joubert DP, Hogan C, Barnes J, Todd T, Warner J. Ambulatory Blood Pressure Lower Following Aquatic Exercise than Land Treadmill Exercise. Medicine & Science in Sports & Exercise. 2018;50(5S):275. DOI: 10.1249/01.mss.0000535990.04549.84
40. Joubert DP, Granados JZ, Oliver JM, Noack BL, Grandjean PW, Woodman CR et al. An Acute Bout of Aquatic Treadmill Exercise Induces Greater Improvements in Endothelial Function and Postexercise Hypotension Than Land Treadmill Exercise: A Crossover Study. American Journal of Physical Medicine & Rehabilitation. 2018;97(8):578–84. DOI: 10.1097/PHM.0000000000000923
41. Crouse SF, Lambert BS, Greene NP, Constanzo TW, Martin SE. Exercise blood pressures are lower aſter aquatic compared to land treadmill training. The FASEB Journal. 2012;26(S1):1142. DOI: 10.1096/fasebj.26.1_supplement.1142.35
42. Igarashi Y, Nogami Y. The effect of regular aquatic exercise on blood pressure: A meta-analysis of randomized controlled trials. European Journal of Preventive Cardiology. 2018;25(2):190–9. DOI: 10.1177/2047487317731164
43. Graef F, Kruel L. Heart rate and perceived exertion at aquatic environment: Differences in relation to land environment and applications for exercise prescription - A review. Revista Brasileira de Medicina do Esporte. 2006;12(4):221–8
Рецензия
Для цитирования:
Чжу Х., Цзинь Ц., Чжао Г. Влияние тренировок в воде на состояние сердечно-сосудистой системы у пациентов с сахарным диабетом 2 типа: систематический обзор и метаанализ. Кардиология. 2021;61(9):52-60. https://doi.org/10.18087/cardio.2021.9.n1729
For citation:
Zhu H., Jin J., Zhao G. Effect of aquatic exercise on cardiovascular fitness in people with type 2 diabetes mellitus: a systematic review and meta-analysis. Kardiologiia. 2021;61(9):52-60. https://doi.org/10.18087/cardio.2021.9.n1729