Preview

Кардиология

Расширенный поиск

Паттерны иммунологических реакций в патогенезе хронической сердечной недостаточности: обзор литературы

https://doi.org/10.18087/cardio.2021.12.n1598

Полный текст:

Аннотация

Иммунная система имеет важнейшее значение в поддержании гомеостаза организма. На сегодняшний день существуют убедительные доказательства ее участия в патогенезе кардиоваскулярной патологии, включая заключительный этап сердечно-сосудистого континуума – сердечную недостаточность. Разнообразие этиопатогенетических факторов развития и прогрессирования хронической сердечной недостаточности (ХСН), вовлечение в патологический процесс большинства органов и систем организма обусловливает объективные сложности в понимании тонких процессов утраты нормальной структуры и функции сердца. Вопросы иммунного гомеостаза организма при ХСН активно изучаются отечественными и зарубежными учеными, в том числе с позиции эффективности специфической иммунотропной терапии. Вместе с тем имеющиеся литературные данные представляют собой, преимущественно, разрозненные результаты, отражающие отдельные звенья иммунопатогенеза сердечно-сосудистой патологии. Настоящий тематический обзор преследует своей целью комплексное освещение основных паттернов иммунологических процессов в патогенезе ХСН, что позволит сформировать целостное представление об изучаемой проблеме.

 

Об авторах

Е. А. Кужелева
Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук, Томск, Россия
Россия

к.м.н., научный сотрудник отделения патологии миокарда



В. А. Федюнина
Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук, Томск, Россия
Россия

младший научный сотрудник отделения патологии миокарда



А. А. Гарганеева
Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук, Томск, Россия
Россия

д.м.н., профессор, руководитель отделения патологии миокарда



Список литературы

1. Мареев В. Ю., Фомин И. В., Агеев Ф. Т., Беграмбекова Ю. Л., Васюк Ю. А., Гарганеева А. А. и др. Клинические рекомендации ОССН – РКО – РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение. Кардиология. 2018;58(6S):8-158. DOI: 10.18087/cardio.2475

2. Cahill TJ, Kharbanda RK. Heart failure after myocardial infarction in the era of primary percutaneous coronary intervention: Mechanisms, incidence and identification of patients at risk. World Journal of Cardiology. 2017;9(5):407–15. DOI: 10.4330/wjc.v9.i5.407

3. Lechat P, Packer M, Chalon S, Cucherat M, Arab T, Boissel J-P. Clinical Effects of β-Adrenergic Blockade in Chronic Heart Failure: A Meta-Analysis of Double-Blind, Placebo-Controlled, Randomized Trials. Circulation. 1998;98(12):1184–91. DOI: 10.1161/01.CIR.98.12.1184

4. Tardif J-C, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. New England Journal of Medicine. 2019;381(26):2497–505. DOI: 10.1056/NEJMoa1912388

5. Verma S, Eikelboom JW, Nidorf SM, Al-Omran M, Gupta N, Teoh H et al. Colchicine in cardiac disease: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovascular Disorders. 2015;15(1):96. DOI: 10.1186/s12872-015-0068-3

6. Singh JA, Wells GA, Christensen R, Tanjong Ghogomu E, Maxwell LJ, MacDonald JK et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database of Systematic Reviews. 2011;2011(2):CD008794. DOI: 10.1002/14651858.CD008794.pub2

7. Everett BM, MacFadyen JG, Thuren T, Libby P, Glynn RJ, Ridker PM. Inhibition of Interleukin-1β and Reduction in Atherothrombotic Cardiovascular Events in the CANTOS Trial. Journal of the American College of Cardiology. 2020;76(14):1660–70. DOI: 10.1016/j.jacc.2020.08.011

8. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, Double-Blind, Placebo-Controlled, Pilot Trial of Infliximab, a Chimeric Monoclonal Antibody to Tumor Necrosis Factor-α, in Patients With Moderate-to-Severe Heart Failure: Results of the AntiTNF Therapy Against Congestive Heart failure (ATTACH) Trial. Circulation. 2003;107(25):3133–40. DOI: 10.1161/01.CIR.0000077913.60364.D2

9. Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nature Reviews Immunology. 2018;18(12):733–44. DOI: 10.1038/s41577-018-0065-8

10. The Immunology of Cardiovascular Homeostasis and Pathology. Sattler S, Kennedy-Lydon T, editors -Cham: Springer International Publishing AG;2017. 283 p. ISBN 978-3-319-57611-4

11. Nathan C, Ding A. Nonresolving Inflammation. Cell. 2010;140(6):871–82. DOI: 10.1016/j.cell.2010.02.029

12. Калюжин В.В., Тепляков А.Т., Вечерский Ю.Ю. Рязанцева Н.В., Хлапов А.П.. Патогенез хронической сердечной недостаточности: изменение доминирующей парадигмы. Бюллетень сибирской медицины. 2007;6(4):71-9.

13. Matzinger P. Tolerance, Danger, and the Extended Family. Annual Review of Immunology. 1994;12(1):991–1045. DOI: 10.1146/annurev.iy.12.040194.005015

14. Land W. Allograft injury mediated by reactive oxygen species: from conserved proteins of Drosophila to acute and chronic rejection of human transplants. Part III: interaction of (oxidative) stress-induced heat shock proteins with toll-like receptor-bearing cells of innate immunity and its consequences for the development of acute and chronic allograft rejection. Transplantation Reviews. 2003;17(2):67–86. DOI: 10.1016/S0955-470X(02)00009-5

15. Castillo EC, Vázquez-Garza E, Yee-Trejo D, García-Rivas G, TorreAmione G. What Is the Role of the Inflammation in the Pathogenesis of Heart Failure? Current Cardiology Reports. 2020;22(11):139. DOI: 10.1007/s11886-020-01382-2

16. Balmforth C, Simpson J, Shen L, Jhund PS, Lefkowitz M, Rizkala AR et al. Outcomes and Effect of Treatment According to Etiology in HFrEF: An Analysis of PARADIGM-HF. JACC: Heart Failure. 2019;7(6):457–65. DOI: 10.1016/j.jchf.2019.02.015

17. Кузьмичкина М.А., Кужелева Е.А., Гарганеева А.А., Рябов В.В., Тепляков А.Т. Хроническая сердечная недостаточность с промежуточной фракцией выброса левого желудочка у больных в кардиологическом стационаре. Клиническая медицина. 2018;96(8):724-8. DOI: 10.18821/0023-2149-2018-96-8-724-728

18. Pfeffer MA, Shah AM, Borlaug BA. Heart Failure With Preserved Ejection Fraction In Perspective. Circulation Research. 2019;124(11):1598–617. DOI: 10.1161/CIRCRESAHA.119.313572

19. Van Linthout S, Tschöpe C. Inflammation – Cause or Consequence of Heart Failure or Both? Current Heart Failure Reports. 2017;14(4):251–65. DOI: 10.1007/s11897-017-0337-9

20. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology. 2013;62(4):263–71. DOI: 10.1016/j.jacc.2013.02.092

21. Sager HB, Hulsmans M, Lavine KJ, Moreira MB, Heidt T, Courties G et al. Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circulation Research. 2016;119(7):853–64. DOI: 10.1161/CIRCRESAHA.116.309001

22. Herwald H, Egesten A. On PAMPs and DAMPs. Journal of Innate Immunity. 2016;8(5):427–8. DOI: 10.1159/000448437

23. Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nature Reviews Immunology. 2016;16(1):35–50. DOI: 10.1038/nri.2015.8

24. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nature Reviews Immunology. 2020;20(2):95–112. DOI: 10.1038/s41577-019-0215-7

25. Hudson BI, Lippman ME. Targeting RAGE Signaling in Inflammatory Disease. Annual Review of Medicine. 2018;69(1):349–64. DOI: 10.1146/annurev-med-041316-085215

26. Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease. Current Opinion in Immunology. 2009;21(1):38–46. DOI: 10.1016/j.coi.2009.01.009

27. Heng BC, Aubel D, Fussenegger M. G Protein–Coupled Receptors Revisited: Therapeutic Applications Inspired by Synthetic Biology. Annual Review of Pharmacology and Toxicology. 2014;54(1):227–49. DOI: 10.1146/annurev-pharmtox-011613-135921

28. Weiß E, Kretschmer D. Formyl-Peptide Receptors in Infection, Inflammation, and Cancer. Trends in Immunology. 2018;39(10):815– 29. DOI: 10.1016/j.it.2018.08.005

29. Zuo S, Li L, Ruan Y, Jiang L, Li X, Li S et al. Acute administration of tumour necrosis factor-α induces spontaneous calcium release via the reactive oxygen species pathway in atrial myocytes. EP Europace. 2018;20(8):1367–74. DOI: 10.1093/europace/eux271

30. Cicha I, Urschel K. TNF-α in the cardiovascular system: from physiology to therapy. International Journal of Interferon, Cytokine and Mediator Research. 2015;7:9–25. DOI: 10.2147/IJICMR.S64894

31. Sack MN. Tumor necrosis factor-α in cardiovascular biology and the potential role for anti-tumor necrosis factor-α therapy in heart disease. Pharmacology & Therapeutics. 2002;94(1–2):123–35. DOI: 10.1016/S0163-7258(02)00176-6

32. Li R, Frangogiannis NG. Chemokines in cardiac fibrosis. Current Opinion in Physiology. 2021;19:80–91. DOI: 10.1016/j.cophys.2020.10.004

33. Damås J, Gullestad L, Ueland T, Solum NO, Simonsen S, Frøland SS et al. CXC-chemokines, a new group of cytokines in congestive heart failure — possible role of platelets and monocytes. Cardiovascular Research. 2000;45(2):428–36. DOI: 10.1016/S0008-6363(99)00262-X

34. Sattar HA. Fundamentals of pathology: medical course and Step 1 review. -US: Pathoma;2019. 234 p. ISBN 978-0-9832246-3-1

35. Ye Z, Zhong L, Zhu S, Wang Y, Zheng J, Wang S et al. The P-selectin and PSGL-1 axis accelerates atherosclerosis via activation of dendritic cells by the TLR4 signaling pathway. Cell Death & Disease. 2019;10(7):507. DOI: 10.1038/s41419-019-1736-5

36. Devaux B, Scholz D, Hirche A, Klovekorn WP, Schaper J. Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. European Heart Journal. 1997;18(3):470–9. DOI: 10.1093/oxfordjournals.eurheartj.a015268

37. Davies MJ, Gordon JL, Gearing AJH, Pigott R, Woolf N, Katz D et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. The Journal of Pathology. 1993;171(3):223–9. DOI: 10.1002/path.1711710311

38. Salvador AM, Nevers T, Velázquez F, Aronovitz M, Wang B, Abadía Molina A et al. Intercellular Adhesion Molecule 1 Regulates Left Ventricular Leukocyte Infiltration, Cardiac Remodeling, and Function in Pressure Overload–Induced Heart Failure. Journal of the American Heart Association. 2016;5(3):e003126. DOI: 10.1161/JAHA.115.003126

39. Yang M, Liu J, Piao C, Shao J, Du J. ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis. Cell Death & Disease. 2015;6(6):e1780. DOI: 10.1038/cddis.2015.144

40. Verma SK, Krishnamurthy P, Barefield D, Singh N, Gupta R, Lambers E et al. Interleukin-10 Treatment Attenuates Pressure Overload– Induced Hypertrophic Remodeling and Improves Heart Function via Signal Transducers and Activators of Transcription 3–Dependent Inhibition of Nuclear Factor-κB. Circulation. 2012;126(4):418–29. DOI: 10.1161/CIRCULATIONAHA.112.112185

41. DeBerge M, Zhang S, Glinton K, Grigoryeva L, Hussein I, Vorovich E et al. Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart. Frontiers in Immunology. 2017;8:1428. DOI: 10.3389/fimmu.2017.01428

42. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А. и др. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 1. Инфекция и иммунитет. 2017;7(3):219–30. DOI: 10.15789/2220-7619-20173-219-230

43. Klinke A, Nussbaum C, Kubala L, Friedrichs K, Rudolph TK, Rudolph V et al. Myeloperoxidase attracts neutrophils by physical forces. Blood. 2011;117(4):1350–8. DOI: 10.1182/blood-2010-05-284513

44. Деев Р.В., Билялов А.И., Жампеисов Т.М. Современные представления о клеточной гибели. Гены & Клетки. 2018;8(1):6-19. DOI: 10.23868/201805001

45. Martinon F, Burns K, Tschopp J. The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell. 2002;10(2):417–26. DOI: 10.1016/S1097-2765(02)00599-3

46. Yin Y, Yan Y, Jiang X, Mai J, Chen NC, Wang H et al. Inflammasomes are Differentially Expressed in Cardiovascular and other Tissues. International Journal of Immunopathology and Pharmacology. 2009;22(2):311–22. DOI: 10.1177/039463200902200208

47. Harapas CR, Steiner A, Davidson S, Masters SL. An Update on Autoinflammatory Diseases: Inflammasomopathies. Current Rheumatology Reports. 2018;20(7):40. DOI: 10.1007/s11926-018-0750-4

48. Lawrence SM, Corriden R, Nizet V. How Neutrophils Meet Their End. Trends in Immunology. 2020;41(6):531–44. DOI: 10.1016/j.it.2020.03.008

49. Потапнев М.П., Гущина Л.М., Мороз Л.А. Фенотипическая и функциональная гетерогенность субпопуляций нейтрофилов в норме и при патологии. Иммунология. 2019;40(5):84–96. DOI: 10.24411/0206-4952-2019-15009

50. Arruda-Olson AM, Reeder GS, Bell MR, Weston SA, Roger VL. Neutrophilia Predicts Death and Heart Failure After Myocardial Infarction: A Community-Based Study. Circulation: Cardiovascular Quality and Outcomes. 2009;2(6):656–62. DOI: 10.1161/CIRCOUTCOMES.108.831024

51. Zhang S, Wan Z, Zhang Y, Fan Y, Gu W, Li F et al. Neutrophil count improves the GRACE risk score prediction of clinical outcomes in patients with ST-elevation myocardial infarction. Atherosclerosis. 2015;241(2):723–8. DOI: 10.1016/j.atherosclerosis.2015.06.035

52. Chia S, Nagurney JT, Brown DFM, Raffel OC, Bamberg F, Senatore F et al. Association of Leukocyte and Neutrophil Counts With Infarct Size, Left Ventricular Function and Outcomes After Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. The American Journal of Cardiology. 2009;103(3):333–7. DOI: 10.1016/j.amjcard.2008.09.085

53. Carbone F, Bonaventura A, Montecucco F. Neutrophil-Related Oxidants Drive Heart and Brain Remodeling After Ischemia/Reperfusion Injury. Frontiers in Physiology. 2020;10:1587. DOI: 10.3389/fphys.2019.01587

54. Гавришева Н.А., Алексеева Г.В., Бойко А.И. Множественная роль лейкоцитов при ишемической болезни сердца. Российский кардиологический журнал. 2017;22(11):86-92. DOI: 10.15829/1560-4071-2017-11-86-92

55. Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nature Reviews Drug Discovery. 2008;7(10):827–40. DOI: 10.1038/nrd2660

56. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and Cytokine Receptors in Advanced Heart Failure: An Analysis of the Cytokine Database from the Vesnarinone Trial (VEST). Circulation. 2001;103(16):2055–9. DOI: 10.1161/01.CIR.103.16.2055

57. Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. European Heart Journal. 2017;38(3):187–97. DOI: 10.1093/eurheartj/ehw002

58. Никонова А.А., Хаитов М.Р., Хаитов Р.М. Характеристика и роль различных популяций макрофагов в патогенезе острых и хронических заболеваний легких. Медицинская иммунология. 2017;19(6):657-72. DOI: 10.15789/1563-0625-2017-6-657-672

59. Liu G, Wang J, Park Y-J, Tsuruta Y, Lorne EF, Zhao X et al. High Mobility Group Protein-1 Inhibits Phagocytosis of Apoptotic Neutrophils through Binding to Phosphatidylserine. The Journal of Immunology. 2008;181(6):4240–6. DOI: 10.4049/jimmunol.181.6.4240

60. Rhys HI, Dell’Accio F, Pitzalis C, Moore A, Norling LV, Perretti M. Neutrophil Microvesicles from Healthy Control and Rheumatoid Arthritis Patients Prevent the Inflammatory Activation of Macrophages. EBioMedicine. 2018;29:60–9. DOI: 10.1016/j.ebiom.2018.02.003

61. Braza MS, Conde P, Garcia M, Cortegano I, Brahmachary M, Pothula V et al. Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. American Journal of Transplantation. 2018;18(5):1247–55. DOI: 10.1111/ajt.14645

62. Abdellatif M, Kroemer G. Co-ordinated mitochondrial degradation by autophagy and heterophagy in cardiac homeostasis. Cardiovascular Research. 2021;117(1):e1–3. DOI: 10.1093/cvr/cvaa345

63. Stanford JC, Young C, Hicks D, Owens P, Williams A, Vaught DB et al. Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution. Journal of Clinical Investigation. 2014;124(11):4737–52. DOI: 10.1172/JCI76375

64. Nishi C, Yanagihashi Y, Segawa K, Nagata S. MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation. Journal of Biological Chemistry. 2019;294(18):7221–30. DOI: 10.1074/jbc.RA118.006628

65. Rong S, Wang X, Wang Y, Wu H, Zhou X, Wang Z et al. Anti-inflammatory activities of hepatocyte growth factor in post-ischemic heart failure. Acta Pharmacologica Sinica. 2018;39(10):1613–21. DOI: 10.1038/aps.2018.14

66. Marneros AG. Effects of chronically increased VEGF‐A on the aging heart. The FASEB Journal. 2018;32(3):1550–65. DOI: 10.1096/fj.201700761RR

67. Buckley CD, Ross EA, McGettrick HM, Osborne ChloeE, Haworth O, Schmutz C et al. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. Journal of Leukocyte Biology. 2006;79(2):303– 11. DOI: 10.1189/jlb.0905496

68. Loynes CA, Lee JA, Robertson AL, Steel MJG, Ellett F, Feng Y et al. PGE2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Science Advances. 2018;4(9):eaar8320. DOI: 10.1126/sciadv.aar8320

69. Bouchery T, Harris N. Neutrophil–macrophage cooperation and its impact on tissue repair. Immunology & Cell Biology. 2019;97(3):289–98. DOI: 10.1111/imcb.12241

70. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology. 2011;11(11):723–37. DOI: 10.1038/nri3073

71. David C, Nance JP, Hubbard J, Hsu M, Binder D, Wilson EH. Stabilin1 expression in tumor associated macrophages. Brain Research. 2012;1481:71–8. DOI: 10.1016/j.brainres.2012.08.048

72. Гомбожапова А.Э., Роговская Ю.В., Ребенкова М.С., Шурупов В.С., Кжышковская Ю.Г., Рябов В.В Стабилин-1позитивные макрофаги в миокарде пациентов с фатальным исходом инфаркта миокарда. Сибирский медицинский журнал (г. Томск). 2016;31(2):100-3.

73. Nahrendorf M, Swirski FK. Abandoning M1/M2 for a Network Model of Macrophage Function. Circulation Research. 2016;119(3):414– 7. DOI: 10.1161/CIRCRESAHA.116.309194

74. Van der Laan AM, ter Horst EN, Delewi R, Begieneman MPV, Krijnen PAJ, Hirsch A et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. European Heart Journal. 2014;35(6):376–85. DOI: 10.1093/eurheartj/eht331

75. Goonewardena SN, Stein AB, Tsuchida RE, Rattan R, Shah D, Hummel SL. Monocyte Subsets and Inflammatory Cytokines in Acute Decompensated Heart Failure. Journal of Cardiac Failure. 2016;22(5):358–65. DOI: 10.1016/j.cardfail.2015.12.014

76. Amir O, Spivak I, Lavi I, Rahat MA. Changes in the Monocytic Subsets CD14dimCD16+ and CD14++CD16− in Chronic Systolic Heart Failure Patients. Mediators of Inflammation. 2012;2012:616384. DOI: 10.1155/2012/616384

77. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80. DOI: 10.1182/blood-2010-02-258558

78. Martini E, Kunderfranco P, Peano C, Carullo P, Cremonesi M, Schorn T et al. Single-Cell Sequencing of Mouse Heart Immune Infiltrate in Pressure Overload–Driven Heart Failure Reveals Extent of Immune Activation. Circulation. 2019;140(25):2089–107. DOI: 10.1161/CIRCULATIONAHA.119.041694

79. Strassheim D, Dempsey EC, Gerasimovskaya E, Stenmark K, Karoor V. Role of Inflammatory Cell Subtypes in Heart Failure. Journal of Immunology Research. 2019;2019:2164017. DOI: 10.1155/2019/2164017

80. Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X, Godwin J et al. The Macrophage in Cardiac Homeostasis and Disease: JACC Macrophage in CVD Series (Part 4). Journal of the American College of Cardiology. 2018;72(18):2213–30. DOI: 10.1016/j.jacc.2018.08.2149


Рецензия

Для цитирования:


Кужелева Е.А., Федюнина В.А., Гарганеева А.А. Паттерны иммунологических реакций в патогенезе хронической сердечной недостаточности: обзор литературы. Кардиология. 2021;61(12):94-104. https://doi.org/10.18087/cardio.2021.12.n1598

For citation:


Kuzheleva E.A., Fedyunina V.A., Garganeeva A.A. Patterns of immunological reactions in the pathogenesis of chronic heart failure: review. Kardiologiia. 2021;61(12):94-104. (In Russ.) https://doi.org/10.18087/cardio.2021.12.n1598

Просмотров: 307


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)