Preview

Кардиология

Расширенный поиск

Гипоксия как возможный регулятор активности эпикардиальных клеток мезотелия после инфаркта миокарда

https://doi.org/10.18087/cardio.2021.6.n1476

Полный текст:

Аннотация

Цель    Изучить влияние гипоксии на активность эпителиально-мезенхимального перехода (ЭМП) в клетках эпикарда, способствующего образованию специализированного микроокружения.

Материал и методы  В работе использована модель экспериментального инфаркта миокарда, сформированная путем перевязки передней нисходящей коронарной артерии. Исследование активности клеток эпикарда после гипоксического воздействия проведено с использованием маркера гипоксии пимонидазола, бромдезоксиуридина и иммунофлуоресцентных методов окрашивания криосрезов сердца, а также клеточной культуры мезотелия in vitro.

Результаты   Обнаружено, что в неповрежденном сердце поддерживаются покоящееся состояние клеток мезотелия, низкий уровень их пролиферации и продукции белков внеклеточного матрикса и активности ЭМП. Острое ишемическое повреждение обеспечивает развитие умеренной гипоксии в области эпикарда / субэпикарда, что вызывает ее глобальную перестройку, связанную с вступлением клеток в ЭМП, изменением клеточного состава и накоплением белков внеклеточного матрикса. Мы обнаружили, что результатом вхождения клеток мезотелия в ЭМП может быть образование предшественников гладкомышечных клеток и фибробластов, а также популяции кардиальных прогениторных клеток Sca-1+, которые могут как участвовать в построении новых сосудов, так и служить мезенхимальным звеном для паракринной поддержки клеток микроокружения. В экспериментах in vitro мы показали, что 72‑часовая гипоксия способствует активации генов регуляторов ЭМП, вызывает разборку межклеточных контактов, разобщение клеток и увеличение их пластичности.

Заключение     Эпикард взрослого сердца служит неким «репаративным резервом», который способен реактивироваться под влиянием гипоксического воздействия. Это создает основу для разработки подхода для воздействия на эпикард, направленного на модуляцию его активности с целью регуляции репаративных процессов.

 

Об авторах

К. В. Дергилев
Институт экспериментальной кардиологии, ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва
Россия

вед. научный сотрудник



З. И. Цоколаева
Институт экспериментальной кардиологии, ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва; НИИ общей реаниматологии им. В. А. Неговского, ФГБНУ «Федеральный научно-клинический центр реаниматологии и реабилитологии», Москва
Россия

старший научный сотрудник



Ю. Д. Василец
Институт экспериментальной кардиологии, ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва
Россия

лаборант-исследователь



И. Б. Белоглазова
Институт экспериментальной кардиологии, ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва
Россия

старший научный сотрудник



Б. Н. Кульбицкий
ГБУЗ «Госпиталь для ветеранов войн № 3» Департамента здравоохранения г. Москвы, Москва
Россия

врач



Е. В. Парфенова
Институт экспериментальной кардиологии, ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва; ФГБОУ ВО «Московский государственный университет им. М. В. Ломоносова», Москва
Россия

Директор института, д.м.н.



Список литературы

1. Bueno H, Moura B, Lancellotti P, Bauersachs J. The year in cardiovascular medicine 2020: heart failure and cardiomyopathies. European Heart Journal. 2021;42(6):657–70. DOI: 10.1093/eurheartj/ehaa1061

2. Lafuse WP, Wozniak DJ, Rajaram MVS. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells. 2020;10(1):51. DOI: 10.3390/cells10010051

3. Дергилев К.В., Василец Ю.Д., Цоколаева З.И., Зубкова Е.С., Парфенова Е.В. Перспективы клеточной терапии инфаркта миокарда и сердечной недостаточности на основе клеток кардиосфер. Терапевтический Архив. 2020;92(4):111-20. DOI: 10.26442/00403660.2020.04.000634

4. Dergilev KV, Shevchenko EK, Tsokolaeva ZI, Beloglazova IB, Zubkova ES, Boldyreva MA et al. Cell Sheet Comprised of Mesenchymal Stromal Cells Overexpressing Stem Cell Factor Promotes Epicardium Activation and Heart Function Improvement in a Rat Model of Myocardium Infarction. International Journal of Molecular Sciences. 2020;21(24):9603. DOI: 10.3390/ijms21249603

5. Дергилев К.В., Комова А.В., Цоколаева З.И., Белоглазова И.Б., Парфенова Е.В. Эпикард как новая мишень для регенеративных технологий в кардиологии. Гены и клетки. 2020;15(2):33-40. DOI: 10.23868/202004016

6. Christoffels VM, Grieskamp T, Norden J, Mommersteeg MTM, Rudat C, Kispert A. Tbx18 and the fate of epicardial progenitors. Nature. 2009;458(7240):E8–9. DOI: 10.1038/nature07916

7. Rudat C, Kispert A. Wt1 and Epicardial Fate Mapping. Circulation Research. 2012;111(2):165–9. DOI: 10.1161/CIRCRESAHA.112.273946

8. Mikawa T, Gourdie RG. Pericardial Mesoderm Generates a Population of Coronary Smooth Muscle Cells Migrating into the Heart along with Ingrowth of the Epicardial Organ. Developmental Biology. 1996;174(2):221–32. DOI: 10.1006/dbio.1996.0068

9. Dettman RW, Denetclaw W, Ordahl CP, Bristow J. Common Epicardial Origin of Coronary Vascular Smooth Muscle, Perivascular Fibroblasts, and Intermyocardial Fibroblasts in the Avian Heart. Developmental Biology. 1998;193(2):169–81. DOI: 10.1006/dbio.1997.8801

10. Männer J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. The Anatomical Record. 1999;255(2):212–26. PMID: 10359522

11. Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Mentink MMT, Gourdie RG, Poelmann RE. Epicardium-Derived Cells Contribute a Novel Population to the Myocardial Wall and the Atrioventricular Cushions. Circulation Research. 1998;82(10):1043–52. DOI: 10.1161/01.RES.82.10.1043

12. Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Bergwerff M, Mentink MMT, Poelmann RE. Epicardial Outgrowth Inhibition Leads to Compensatory Mesothelial Outflow Tract Collar and Abnormal Cardiac Septation and Coronary Formation. Circulation Research. 2000;87(11):969–71. DOI: 10.1161/01.RES.87.11.969

13. Pérez-Pomares J-M, Carmona R, González-Iriarte M, Atencia G, Wessels A, Muñoz-Chápuli R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. The International Journal of Developmental Biology. 2002;46(8):1005–13. PMID: 12533024

14. Poelmann RE, Lie-Venema H, Gittenberger-de Groot AC. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Texas Heart Institute Journal. 2002;29(4):255–61. PMID: 12484609

15. Rothenberg F, Hitomi M, Fisher SA, Watanabe M. Initiation of apoptosis in the developing avian outflow tract myocardium. Developmental Dynamics. 2002;223(4):469–82. DOI: 10.1002/dvdy.10077

16. Schaefer KS, Doughman YQ, Fisher SA, Watanabe M. Dynamic patterns of apoptosis in the developing chicken heart. Developmental Dynamics. 2004;229(3):489–99. DOI: 10.1002/dvdy.10463

17. Chen TH-P, Chang T-C, Kang J-O, Choudhary B, Makita T, Tran CM et al. Epicardial Induction of Fetal Cardiomyocyte Proliferation via a Retinoic Acid-Inducible Trophic Factor. Developmental Biology. 2002;250(1):198–207. DOI: 10.1006/dbio.2002.0796

18. Zhou B, Honor LB, He H, Ma Q, Oh J-H, Butterfield C et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. Journal of Clinical Investigation. 2011;121(5):1894–904. DOI: 10.1172/JCI45529

19. Limana F, Bertolami C, Mangoni A, Di Carlo A, Avitabile D, Mocini D et al. Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: Role of the pericardial fluid. Journal of Molecular and Cellular Cardiology. 2010;48(4):609–18. DOI: 10.1016/j.yjmcc.2009.11.008

20. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8. DOI: 10.1038/nature11044

21. von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circulation Research. 2012;110(12):1628–45. DOI: 10.1161/CIRCRESAHA.111.259960

22. Smits A, Riley P. Epicardium-Derived Heart Repair. Journal of Developmental Biology. 2014;2(2):84–100. DOI: 10.3390/jdb2020084

23. Missinato MA, Tobita K, Romano N, Carroll JA, Tsang M. Extracellular component hyaluronic acid and its receptor Hmmr are required for epicardial EMT during heart regeneration. Cardiovascular Research. 2015;107(4):487–98. DOI: 10.1093/cvr/cvv190

24. Singh A, Ramesh S, Cibi DM, Yun LS, Li J, Li L et al. Hippo Signaling Mediators Yap and Taz Are Required in the Epicardium for Coronary Vasculature Development. Cell Reports. 2016;15(7):1384–93. DOI: 10.1016/j.celrep.2016.04.027

25. Wada AM, Smith TK, Osler ME, Reese DE, Bader DM. Epicardial/Mesothelial Cell Line Retains Vasculogenic Potential of Embryonic Epicardium. Circulation Research. 2003;92(5):525–31. DOI: 10.1161/01.RES.0000060484.11032.0B

26. Lu J, Landerholm TE, Wei JS, Dong X-R, Wu S-P, Liu X et al. Coronary Smooth Muscle Differentiation from Proepicardial Cells Requires RhoA-Mediated Actin Reorganization and p160 Rho-Kinase Activity. Developmental Biology. 2001;240(2):404–18. DOI: 10.1006/dbio.2001.0403

27. Merki E, Zamora M, Raya A, Kawakami Y, Wang J, Zhang X et al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proceedings of the National Academy of Sciences of the USA. 2005;102(51):18455–60. DOI: 10.1073/pnas.0504343102

28. Lavine KJ, White AC, Park C, Smith CS, Choi K, Long F et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes & Development. 2006;20(12):1651–66. DOI: 10.1101/gad.1411406

29. Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Developmental Biology. 2001;234(1):204–15. DOI: 10.1006/dbio.2001.0254

30. Vega-Hernandez M, Kovacs A, De Langhe S, Ornitz DM. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development. 2011;138(15):3331–40. DOI: 10.1242/dev.064410

31. Zamora M, Manner J, Ruiz-Lozano P. Epicardium-derived progenitor cells require -catenin for coronary artery formation. Proceedings of the National Academy of Sciences USA. 2007;104(46):18109–14. DOI: 10.1073/pnas.0702415104

32. Austin AF, Compton LA, Love JD, Brown CB, Barnett JV. Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFβ. Developmental Dynamics. 2008;237(2):366–76. DOI: 10.1002/dvdy.21421

33. Tao J, Barnett J, Watanabe M, Ramírez-Bergeron D. Hypoxia Supports Epicardial Cell Differentiation in Vascular Smooth Muscle Cells through the Activation of the TGFβ Pathway. Journal of Cardiovascular Development and Disease. 2018;5(2):19. DOI: 10.3390/jcdd5020019

34. Tao J, Doughman Y, Yang K, Ramirez-Bergeron D, Watanabe M. Epicardial HIF signaling regulates vascular precursor cell invasion into the myocardium. Developmental Biology. 2013;376(2):136–49. DOI: 10.1016/j.ydbio.2013.01.026

35. Дергилев К.В., Цоколаева З.И., Белоглазова И.Б., Ратнер Е.И., Молокотина Ю.Д., Парфенова Е.В. Характеристика ангиогенных свойств c-Kit+-клеток миокарда. Гены и клетки. 2018;13(3):82-8. DOI: 10.23868/201811038

36. Kindrick JD, Mole DR. Hypoxic Regulation of Gene Transcription and Chromatin: Cause and Effect. International Journal of Molecular Sciences. 2020;21(21):8320. DOI: 10.3390/ijms21218320

37. Krohn KA, Link JM, Mason RP. Molecular Imaging of Hypoxia. Journal of Nuclear Medicine. 2008;49(Suppl 2):129S-148S. DOI: 10.2967/jnumed.107.045914

38. Nordsmark M, Loncaster J, Aquino-Parsons C, Chou S-C, Ladekarl M, Havsteen H et al. Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiotherapy and Oncology. 2003;67(1):35–44. DOI: 10.1016/S0167-8140(03)00010-0

39. Sanada F, Kim J, Czarna A, Chan NY-K, Signore S, Ogórek B et al. c-Kit–Positive Cardiac Stem Cells Nested in Hypoxic Niches Are Activated by Stem Cell Factor Reversing the Aging Myopathy. Circulation Research. 2014;114(1):41–55. DOI: 10.1161/CIRCRESAHA.114.302500

40. Romano N, Ceci M. The face of epicardial and endocardial derived cells in zebrafish. Experimental Cell Research. 2018;369(1):166–75. DOI: 10.1016/j.yexcr.2018.05.022

41. Дергилев К.В., Рубина К.А., Парфенова Е.В. Резидентные стволовые клетки сердца. Кардиология. 2011;51(4):84-92. PMID: 21623726

42. Iancu CB, Iancu D, Renţea I, Hostiuc S, Dermengiu D, Rusu MC. Molecular signatures of cardiac stem cells. Romanian Journal of Morphology and Embryology. 2015;56(4):1255–62. PMID: 26743269

43. Scalise M, Marino F, Cianflone E, Mancuso T, Marotta P, Aquila I et al. Heterogeneity of Adult Cardiac Stem Cells. P. 141-178. DOI: 10.1007/978-3-030-24108-7_8. In: Stem Cells Heterogeneity in Different Organs. [ISBN: 978-3-030-24107-0, 978-3-030-24108-7. Series Title: Advances in Experimental Medicine and Biology]. Birbrair A, editor -Cham: Springer International Publishing;2019.

44. Samal R, Sappa PK, Gesell Salazar M, Wenzel K, Reinke Y, Völker U et al. Global secretome analysis of resident cardiac progenitor cells from wild-type and transgenic heart failure mice: Why ambience matters. Journal of Cellular Physiology. 2019;234(7):10111–22. DOI: 10.1002/jcp.27677

45. Balakrishnan S, Hartman CW, Grinnan GL, Bartel AG, Crisler C, Brickman RD. Pericardial fluid gas analysis in hemorrhagic pericardial tamponade. The Annals of Thoracic Surgery. 1979;27(1):55–8. DOI: 10.1016/s0003-4975(10)62971-2

46. de Laforcade AM, Freeman LM, Rozanski EA, Rush JE. Biochemical analysis of pericardial fluid and whole blood in dogs with pericardial effusion. Journal of Veterinary Internal Medicine. 2005;19(6):833–6. PMID: 16355677

47. Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. Journal of Experimental & Clinical Cancer Research. 2020;39(1):224. DOI: 10.1186/s13046-020-01733-5

48. Higgins DF, Kimura K, Iwano M, Haase VH. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle. 2008;7(9):1128–32. DOI: 10.4161/cc.7.9.5804

49. Дергилев К.В., Цоколаева З.И., Белоглазова И.Б., Трактуев Д.О., Горелова А.В., Зубко А.В. и др. Интрамиокардиальное введение плазмиды, кодирующей фактор роста тромбоцитов, способствует увеличению эпикардопосредованной васкуляризации постинфарктного сердца (экспериментальное исследование). Общая реаниматология. 2020;16(6):54-64. DOI: 10.15360/1813-9779-2020-6-54-64

50. Wei K, Serpooshan V, Hurtado C, Diez-Cuñado M, Zhao M, Maruyama S et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525(7570):479–85. DOI: 10.1038/nature15372

51. Widera C, Horn-Wichmann R, Kempf T, Bethmann K, Fiedler B, Sharma S et al. Circulating Concentrations of Follistatin-Like 1 in Healthy Individuals and Patients with Acute Coronary Syndrome as Assessed by an Immunoluminometric Sandwich Assay. Clinical Chemistry. 2009;55(10):1794–800. DOI: 10.1373/clinchem.2009.129411


Для цитирования:


Дергилев К.В., Цоколаева З.И., Василец Ю.Д., Белоглазова И.Б., Кульбицкий Б.Н., Парфенова Е.В. Гипоксия как возможный регулятор активности эпикардиальных клеток мезотелия после инфаркта миокарда. Кардиология. 2021;61(6):59-68. https://doi.org/10.18087/cardio.2021.6.n1476

For citation:


Dergilev K.V., Tsokolaeva Z.I., Vasilets Yu.D., Beloglazova I.B., Kulbitsky B.N., Parfyonova Y.V. Hypoxia – as a Possible Regulator of the Activity of Epicardial Mesothelial Cells After Myocardial Infarction. Kardiologiia. 2021;61(6):59-68. (In Russ.) https://doi.org/10.18087/cardio.2021.6.n1476

Просмотров: 218


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0022-9040 (Print)
ISSN 2412-5660 (Online)