2015


Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
2015/№5

Роль экспрессии р38 МАР-киназы в ремоделировании миокарда при экспериментальной сердечной недостаточности, возможности фармакологического воздействия

Лискова Ю. В.1, Стадников А. А.1, Саликова С. П.2
1 – ГБОУ ВПО «ОрГМУ» МЗ РФ, 460000, Оренбург, ул. Советская, д. 6
2 – ФГКВОУ ВПО «Военно-медицинская академия им. С. М. Кирова» Минобороны РФ, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6

Ключевые слова: сердечная недостаточность, р38a-митоген-активированная протеинкиназа, ремоделирование, мелатонин, периндоприл, метопролол

DOI: 10.18087/rhfj.2015.5.2134

Актуальность. Р38 МАРК является одной из самых древних сигнальных молекул, участвующих в многочисленных клеточных процессах в сердце: эмбриогенезе, физиологической адаптации и патологии миокарда. Тем не менее, ее роль в развитии СН остается по‑прежнему неясной. Цель. Изучение экспрессии р38 MAPKα в миокарде ЛЖ крыс в условиях экспериментальной СН (ЭСН), а также при введении мелатонина, периндоприла и метопролола. Материалы и методы. С помощью методов световой микроскопии, иммуноцитохимии, морфометрии исследовали миокард ЛЖ крыс–самцов линии Wistar (n=38). ЭСН моделировали по методике В. И. Инчиной с соавт. (2000 г.) путем подкожного введения в течение 14 сут. 0,1 мл 1 % раствора мезатона с последующим плаванием до глубокого утомления. Результаты. У животных на 14 сут. ЭСН наблюдались значительные структурно-функциональные изменения, заключающиеся в выраженном гетероморфизме кардиомиоцитов (КМЦ), существенной реорганизации сосудов микроциркуляторного русла, активации компонентов внеклеточного матрикса (ВМ). Данные нарушения сохранялись в миокарде и на 28 сут. ЭСН с тенденцией к возрастанию дистрофически и атрофически измененных КМЦ, усилению их фенотипической гетерогенности, а также увеличению объемной плотности (ОП) стромы, что сопровождалось высокой активностью р38 MAPKα. У крыс, получавших 14 сут. мелатонин, периндоприл и метопролол, отмечался регресс патологических изменений как КМЦ, так и ВМ, получены неоднозначные результаты экспрессии р38 MAPKα в миокарде. Заключение. Обсуждаются разные кардиопротективные механизмы влияния мелатонина, периндоприла и метопролола на миокард при ЭСН и роль р38 MAPKα в ремоделировании сердца.
  1. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010 Oct;90 (4):1507–46.
  2. Anilkumar N, Sirker A, Shah AM. Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci. 2009 Jan 1;14:3168–87.
  3. Frantz S, Berh T, Hu K, Fraccarollo D, Strotmann J, Goldberg E et al. Role of p38 mitogen-activated protein kinase in cardiac remodeling. Br J Pharmacol. 2007 Jan;150 (2):130–5.
  4. Ma X, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA et al. Inhibition of p38 mitogen-activated protein kinase decrea­ses cardiomyocyte apoptosis and improves cardiac function after myocaridal ischemia and reperfusion. Circulation. 1999 Apr 6;99 (13):1685–91.
  5. Mitra A, Ray A, Datta R, Sengupta S, Sarkar S. Cardioprotective role of P38 MAPK during myocardial infarction via parallel activation of α-crystallin B and Nrf2. J Cell Physiol. 2014 Sep;229 (9):1272–82.
  6. Чаиркин И. Н., Чаиркина Н. В., Замотаева М. Н., Инчина В. И., Дроздов И. А. Морфологические изменения миокарда при катехоламиновом повреждении и воздействии физической нагрузки и их коррекция антиоксидантами различной структуры. Морфологические ведомости. 2011;3:116–117.
  7. Автандилов Г. Г. Медицинская морфометрия. Руководство. – М.: «Медицина», 1990.-384с.
  8. Лискова Ю. В., Саликова С. П., Стадников А. А. Особенности ремоделирования внеклеточного матрикса миокарда левого желудочка крыс с экспериментальной сердечной недостаточностью при введении периндоприла и мелатонина. Кардиология. 2014;54 (9):52–6.
  9. Hernández-Torres F, Martínez-Fernández S, Zuluaga S, Nebreda A, Porras A, Aranega AE, Navarro F. A role for p38α mitogen-activa­ted protein kinase in embryonic cardiac differentiation. FEBS Lett. 2008 Apr 2;582 (7):1025–31.
  10. Sharov VG, Todor A, Suzuki G, Morita H, Tanhehco EJ, Sabbah HN. Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 МАРК, Fas-L and cyclin DI. Eur J Heart Fail. 2003 Mar;5 (2):121–9.
  11. Непомнящих Л. М., Лушникова Е. Л., Семенов Д. Е. Регене­раторно-пластическая недостаточность сердца: морфологические основы и молекулярные механизмы. – М.: «РАМН», 2003. – 255с.
  12. Aoki H, Richmond M, Izumo S, Sadoshima J. Specific role of the extracellular signal-regulated kinase pathway in angiotensin II-induced cardiac hypertrophy in vitro. Biochem J. 2000 Apr 1;347 (Pt 1):275–84.
  13. Barancik M, Htun P, Strohm C, Kilian S, Schaper W. Inhibition of the cardiac p38‑MAPK pathway by SB230580 delays ischemic cell death. J Cardiovasc Pharmacol. 2000 Mar;35 (3):474–83.
  14. Li Z, Ma JY, Kerr I, Chakravarty S, Dugar S, Schreiner G, Potter AA. Selective inhibition of p38α MAPK improves cardiac function and reduces myocardial apoptosis in rat model of myocardial injury. Am J Physiol Heart Circ Physiol. 2006 Oct;291 (4):H1972–7.
  15. Engel FB, Schebesta M, Duong M, Lu G, Ren S, Madwed JB et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005 May 15;19 (10):1175–87.
  16. Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci USA. 2001 Oct 9;98 (21):12283–8.
  17. Cross HR, Li M, Petrich BG, Murphy E, Wang Y, Steenbergen C. Effect of p38 MAP kinases on contractility and ischmeic injury in intact heart. Acta Physiol Hung. 2009 Sep;96 (3):307–23.
  18. Klein G, Schaefer A, Hilfiker-Kleiner D, Oppermann D, Shukla P, Quint A et al. Increased collagen deposition and diastolic dysfunction but preserved myocardial hypertrophy after pressure overload in mice lacking PKCε. Circ Res. 2005 Apr 15;96 (7):748–55.
  19. Nishida K, Yamaguchi O, Hirotani S, Hikoso S, Higuchi Y, Watanabe T et al. p38α Mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol Cell Biol. 2004 Dec;24 (24):10611–20.
  20. Singh BM, Mehta JL. Interactions between the renin-angiotensin system and dyslipidemia: relevance in the therapy of hypertension and coronary heart disease. Arch Intern Med. 2003 Jun 9;163 (11):1296–304.
  21. Sano M, Fukuda K, Sato T, Kawaguchi H, Suematsu M, Matsuda S et al. ERK and p38 MAPK, but not NF-κB, are critically involved in reactive oxygen species-mediated induction of IL-6 byangiotensin II in cardiac fibroblasts. Circ Res. 2001 Oct 12;8998):661–9.
  22. Kompa AR, See F, Lewis DA, Adrahtas A, Cantwell DM, Wang BH, Krum H. Long-term but not short-term p38 mitogen-activated protein kinase inhibition improves cardiac function and reduces cardiac remodeling post-myocardial infarction. J Pharmacol Exp Ther. 2008 Jun;325 (3):741–50.
  23. Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX. Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med. 2009 Jan-Feb;15 (1-2):43–50.
  24. Reiter RJ, Tan DX. Melatonin and cardiac pathophysiology. Heart Metab. 2009;44:31–4.
  25. Dhingra S, Sharma AK, Singla DK, Singal PK. p38 and ERK1 / 2 MAPKs mediate the interplay of TNF-α and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol. 2007 Dec;293 (6):H3524–31.
  26. Li M, Georgakopoulos D, Lu G, Hester L, Kass DA, Hasday J, Wang Y. p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation. 2005 May 17;111 (19):2494–502.
  27. Martin ED, Bassi R, Marber MS. Р38 MAPK in cardioprotection – are we there yet? Br J Pharmacol. 2015 Apr;172 (8):2101–13.
  28. Remondino A, Kwon SH, Communal C, Pimentel DR, Sawyer DB, Singh K, Colucci WS. β-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species / c-Jun NH2‑terminal kinase-dependent activation of the mitochondrial pathway. Circ Res. 2003 Feb 7;92 (2):136–8.
  29. Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic signaling in heart failure? Circ Res. 2003 Nov 14;93 (10):896–906.
  30. Ono K, Han J. The p38 signal transduction pathway activation and function. Cell Signal. 2000 Jan;12 (1):1–13.
Лискова Ю. В., Стадников А. А., Саликова С. П. Роль экспрессии р38 М АР-киназы в ремоделировании миокарда при экспериментальной сердечной недостаточности, возможности фармакологического воздействия. Журнал Сердечная Недостаточность. 2015;16 (5):323–328

Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
Ru En