Журнал Сердечная Недостаточность 2014 год Матриксные металлопротеиназы в кардиологической практике



Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
2014/№6

Матриксные металлопротеиназы в кардиологической практике


Драпкина О. М., Гегенава Б. Б.

ГБОУ ВПО «Первый МГМУ имени И. М. Сеченова» МЗ РФ, 119991, Москва, ул. Трубецкая, д. 8, стр. 2


Ключевые слова: атеросклероз, желатиназы, коллагеназы, матриксины, матриксные металлопротеиназы, 
матриксные металлопротеиназы мембранного типа, матрилизины, разрыв бляшки, сахарный диабет, 
сердечно-сосудистая патология, стромелизины


DOI: 10.18087 / rhfj.2014.6.1959

В обзоре рассматривают матриксные металлопротеиназы (ММП), их строение и классификацию. Подробно описано значение ММП при сердечно-сосудистой патологии, атеросклеротическом поражении и СД.

  1. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005 Jan;85 (1):1–31.
  2. Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. 2002 Mar 22;90 (5):520–30.
  3. Shah PK. Inflammation, metalloproteinases, and increased proteo­lysis-an emerging pathophysiological paradigm in aortic aneurysm. Circulation. 1997 Oct 7;96 (7):2115–7.
  4. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003 May 2;92 (8):827–39.
  5. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999 Jul 30;274 (31):21491–4.
  6. Bode W, Gomis-Rüth FX, Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-bin­ding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett. 1993 Sep 27;331 (1-2):134–40.
  7. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006 Feb 15;69 (3):562–73.
  8. Limb GA, Matter K, Murphy G et al. Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A / C degradation during apoptosis. Am J Pathol. 2005 May;166 (5):1555–63.
  9. Kwan JA, Schulze CJ, Wang W et al. Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J. 2004 Apr;18 (6):690–2.
  10. Luo D, Mari B, Stoll I, Anglard P. Alternative splicing and promo­ter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase. J Biol Chem. 2002 Jul 12;277 (28):25527–36.
  11. Allan JA, Docherty AJ, Barker PJ et al. Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem J. 1995 Jul 1;309 (pt 1):299–306.
  12. Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase: inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific ¾- and ¼-length fragments. J Biol Chem. 1995 Mar 17;270 (11):5872–6.
  13. Patterson ML, Atkinson SJ, Knäuper V, Murphy G. Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett. 2001 Aug 17;503 (2-3):158–62.
  14. Itoh T, Ikeda T, Gomi H et al. Unaltered secretion of β-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2) – deficient mice. J Biol Chem. 1997 Sep 5;272 (36):22389–92.
  15. Martignetti JA, Aqeel AA, Sewairi WA et al. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet. 2001 Jul;28 (3):261–5.
  16. Suzuki K, Enghild JJ, Morodomi T et al. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry. 1990 Nov 6;29 (44):10261–70.
  17. Murphy G, Segain JP, O'Shea M et al. The 28‑kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J Biol Chem. 1993 Jul 25;268 (21):15435–41.
  18. Pei D, Majmudar G, Weiss SJ. Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem. 1994 Oct 14;269 (41):25849–55.
  19. Li W, Gibson CW, Abrams WR et al. Reduced hydrolysis of amelogenin may result in X-linked amelogenesis imperfecta. Matrix Biol. 2001 Jan;19 (8):755–60.
  20. Uria JA, López-Otín C. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res. 2000 Sep 1;60 (17):4745–51.
  21. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function and biochemistry. Circ Res. 2003 may 2;92 (8):827–39.
  22. Ohuchi E, Imai K, Fujii Y et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem. 1997 Jan 24;272 (4):2446–51.
  23. Holmbeck K, Bianco P, Caterina J et al. MT1‑MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 1999 Oct 1;99 (1):81–92.
  24. Pepper MS. Extracellular proteolysis and angiogenesis. Thromb Haemost. 2001 Jul;86 (1):346–55.
  25. Sekine-Aizawa Y, Hama E, Watanabe K et al. Matrix metalloproteinase (MMP) system in brain: identification and characterization of brain-specific MMP highly expressed in cerebellum. Eur J Neurosci. 2001 Mar;13 (5):935–48.
  26. Velasco G, Cal S, Merlos-Suárez A et al. Human MT6‑matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 2000 Feb 15;60 (4):877–82.
  27. Pei D. Leukolysin / MMP25 / MT6‑MMP: a novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Res. 1999 Dec;9 (4):291–303.
  28. Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem. 1993 Nov 15;268 (32):23824–9.
  29. Shipley JM, Wesselschmidt RL, Kobayashi DK et al. Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci U S A. 1996 Apr 30;93 (9):3942–6.
  30. Sedlacek R, Mauch S, Kolb B et al. Matrix metalloproteinase MMP-19 (RASI 1) is expressed on the surface of activated periphe­ral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology. 1998 Feb;198 (4):408–23.
  31. Sadowski T, Dietrich S, Muller M et al. Matrix metalloproteinase-19 expression in normal and diseased skin: dysregulation by epidermal proliferation. J Invest Dermatol. 2003 Nov;121 (5):989–96.
  32. Velasco G, Pendas AM, Fueyo A et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem. 1999 Feb 19;274 (8):4570–6.
  33. Pei D, Kang T, Qi H. Cysteine array matrix metalloproteinase (CA-MMP) / MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem. 2000 Oct 27;275 (43):33988–97.
  34. Yang MZ, Kurkinen M. Cloning and characterization of a novel matrix metalloproteinase (MMP), CMMP, from chicken embryo fibroblasts-CMMP, Xenopus XMMP and human MMP-19 have a conserved unique cysteine in the catalytic domain. J Biol Chem. 1998 Jul 10;273 (28):17893–900.
  35. Marchenko GN, Strongin AY. MMP-28, a new human matrix metalloproteinase with an unusual cysteine-switch sequence is widely expressed in tumors. Gene. 2001 Mar 7;265 (1-2):87–93.
  36. Lohi J, Wilson CL, Roby JD, Parks WC. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J Biol Chem. 2001 Mar 30;276 (13):10134–44.
  37. Saarialho-Kere U, Kerkela E, Jahkola T et al. Epilysin (MMP-28) expression is associated with cell proliferation during epithelial repair. J Invest Dermatol. 2002 Jul;119 (1):14–21.
  38. Драпкина О. М., Палаткина Л., Зятенкова Е. Плейотропные эффекты статинов. влияние на жесткость сосудов. Врач. 2012;9:5–8.
  39. Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008 May 15;358 (20):2148–59.
  40. Fertin M, Dubois E, Belliard A et al. Usefulness of circulating biomarkers for the prediction of left ventricular remodeling after myocardial infarction. Am J Cardiol. 2012 Jul 15;110 (2):277–83.
  41. Maisel AS, Krishnaswamy P, Nowak RM et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002 Jul 18;347 (3):161–7.
  42. Opdenakker G, Van den Steen PE, Dubois B et al. Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol. 2001 Jun;69 (6):851–9.
  43. Tang WH, Francis GS, Morrow DA et al. National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: clinical utilization of cardiac biomarker testing in heart failure. Circulation. 2007 Jul 31;116 (5):e99–109.
  44. Velagaleti RS1, Gona P, Larson MG et al. Multimarker approach for the prediction of heart failure incidence in the community. Circulation. 2010 Oct 26;122 (17):1700–6.
  45. Lang CC, Mancini DM. Non-cardiac comorbidities in chronic heart failure. Heart. 2007 Jun;93 (6):665–71.
  46. Maisel AS, Krishnaswamy P, Nowak RM et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002 Jul 18;347 (3):161–7.
  47. Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP) – 9: A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther. 2013 Jul;139 (1):32–40.
  48. Blankenberg S, Rupprecht HJ, Poirier O et al. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003 Apr 1;107 (12):1579–85.
  49. Sundstrom J, Evans JC, Benjamin EJ et al. Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation. 2004 Jun 15;109 (23):2850–6.
  50. Hlatky MA, Ashley E, Quertermous T et al. Matrix metalloprote­inase circulating levels, genetic polymorphisms, and susceptibility to acute myocardial infarction among patients with coronary artery disease. Am Heart J. 2007 Dec;154 (6):1043–51.
  51. Fertin M, Dubois E, Belliard A et al. Usefulness of circulating biomarkers for the prediction of left ventricular remodeling after myocardial infarction. Am J Cardiol. 2012 Jul 15;110 (2):277–83.
  52. Драпкина О. М., Гегенава Б. Б. Фиброз миокарда у больных сахарным диабетом. Рациональная фармакотерапия в кардиологии. 2013;9 (1):62–5.
  53. Драпкина О. М., Палаткина Л. Статины – визитная карточка кардиолога. Consilium Medicum.2012; (14) 5:28–31.
  54. Драпкина О. М. РААС и фиброз. Гепатокардиальные связи. Русский Медицинский Журнал 2011;19 (14):1–6.
  55. Orbe J, Fernandez L, Rodriguez JA et al. Different expression of MMPs / TIMP-1 in human atherosclerotic lesions. Relation to plaque features and vascular bed. Atherosclerosis. 2003 Oct;170 (2):269–76.
  56. Knox JB, Sukhova GK, Whittemore AD, Libby P. Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation. 1997 Jan 7;95 (1):205–12.
  57. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994 Dec;94 (6):2493–503.
  58. Luttun A, Lutgens E, Manderveld A et al. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation. 2004 Mar 23;109 (11):1408–14.
  59. Lee JK, Zaidi SH, Liu P et al. A serine elastase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis. Nat Med. 1998 Dec;4 (12):1383–91.
  60. Liu P, Sun M, Sader S. Matrix metalloproteinases in cardiovascular disease. Can J Cardiol. 2006 Feb;22 (Suppl B): 25B-30B.
  61. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999 Jul 30;274 (31):21491–4.
  62. Uemura S, Matsushita H, Li W et al. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res. 2001 Jun 22;88 (12):1291–8.
  63. Ebihara I, Nakamura T, Shimada N, Koide H. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am J Kidney Dis. 1998 Oct;32 (4):544–50.
  64. Vu TH, Shipley JM, Bergers G et al. MMP-9 / gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998 May 1;93 (3):411–22.
  65. Qian X, Wang TN, Rothman VL et al. Thrombospondin-1 modulates angiogenesis in vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells. Exp Cell Res. 1997 Sep 15;235 (2):403–12.
  66. Herron GS, Banda MJ, Clark EJ et al. Secretion of metalloproteina­ses by stimulated capillary endothelial cells, II: expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J Biol Chem. 1986 Feb 25;261 (6):2814–8.
  67. Hanemaaijer R, Koolwijk P, le Clercq L et al. Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells: effects of tumour necrosis factor-α, interleukin-1 and phorbol ester. Biochem J. 1993 Dec 15;296 (pt 3):803–9.
  68. McMillan WD, Tamarina NA, Cipollone M et al. Size matters: the relationship between MMP-9 expression and aortic diameter. Circulation. 1997 Oct 7;96 (7):2228–32.
  69. Sato H, Kita M, Seiki M. v-Src activates the expression of 92‑kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements: a mechanism regulating gene expression independent of that by inflammatory cytokines. J Biol Chem. 1993 Nov 5;268 (31):23460–8.
  70. Li N, Karin M. Is NF-κB the sensor of oxidative stress? FASEB J. 1999 Jul;13 (10):1137–43.
  71. Lee TS, Saltsman KA, Ohashi H, King GL. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc Natl Acad Sci U S A. 1989 Jul;86 (13):5141–5.
  72. Trocme C, Gaudin P, Berthier S et al. Human B lymphocytes synthesize the 92‑kDa gelatinase, matrix metalloproteinase-9. J Biol Chem. 1998 Aug 7;273 (32):20677–84.
  73. Fukumoto S, Nishizawa Y, Hosoi M et al. Protein kinase C δ inhibits the proliferation of vascular smooth muscle cells by suppressing G1 cyclin expression. J Biol Chem. 1997 May 23;272 (21):13816–22.
  74. Chatelain E, Boscoboinik DO, Bartoli GM et al. Inhibition of smooth muscle cell proliferation and protein kinase C activity by tocopherols and tocotrienols. Biochim Biophys Acta. 1993 Mar 10;1176 (1-2):83–9.
  75. Benna JE, Dang PM, Gaudry M et al. Phosphorylation of the respiratory burst oxidase subunit p67 (phox) during human neutrophil activation: regulation by protein kinase C-dependent and independent pathways. J Biol Chem. 1997 Jul 4;272 (27):17204–8.
  76. Benna JE, Dang PM, Gaudry M et al. Phosphorylation of the respiratory burst oxidase subunit p67 (phox) during human neutrophil activation: regulation by protein kinase C-dependent and independent pathways. J Biol Chem. 1997 Jul 4;272 (27):17204–8.
  77. Бобкова И. Н., Козловская Л. В., Ли О. А. Матриксные металлопротеиназы в патогенезе острых и хронических заболеваний почек (Обзор литературы). Нефрология и диализ. 2008;10 (2).
Драпкина О. М., Гегенава Б. Б. Матриксные металлопротеиназы в кардиологической практике. Журнал Сердечная Недостаточность. 2014;15 (6):397–404

Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
Ru En