2018


Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
2018/№S2

Минеральные и костные нарушения при хронической сердечной недостаточности

Резник Е. В., Никитин И. Г.
ФГБОУ ВО «РНИМУ им. Н. И. Пирогова» МЗ РФ, 117997, Москва, ул. Островитянова, д. 1

Ключевые слова: хроническая сердечная недостаточность, хроническая болезнь почек, минеральные и костные нарушения, гиперфосфатемия, гиперпаратиреоз, недостаточность витамина D, остеопороз, кальцификация, FGF23, Клото

DOI: 10.18087/cardio.2429

У многих пациентов с ХСН имеется сопутствующая хроническая болезнь почек (ХБП). Практически у всех больных с терминальной ХБП и у многих пациентов на ранних стадиях ХБП появляются различные нарушения минерального и костного обмена (МКН), связанные с общей летальностью и высоким риском развития сердечно-сосудистых осложнений. В этом обзоре рассматриваются имеющиеся в настоящее время данные о нарушениях минерального и костного обмена у больных ХСН, в том числе гипокальциемии, гиперфосфатемии, дефиците/недостаточности витамина D, вторичном гиперпаратиреозе, изменениях уровней FGF23, Klotho, остеопорозе, остеопении, их клиническом и прогностическом значении, возможностях их коррекции.
  1. Braunwald E. Heart failure. JACC Heart Fail. 2013;1 (1):1–20. DOI:10.1016/j.jchf.2012.10.002.
  2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure. 2016;18 (8):891–975. DOI:10.1002/ejhf.592.
  3. Hunt SA, American College of Cardiology, American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol. 2005;46 (6):e1–82. DOI:10.1016/j.jacc.2005.08.022.
  4. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al. Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation. 2015;131 (4):e29–322. DOI:10.1161/CIR.0000000000000152.
  5. McMurray JJV. Chronic kidney disease in patients with cardiac disease: a review of evidence-based treatment. Kidney Int. 2005;68 (4):1419–26. DOI:10.1111/j.1523–1755.2005.00552.x.
  6. McClellan M. WM, Flanders WD, Langston RD, Jurkovitz C, Presley R. Anemia and renal insufficiency are independent risk factors for death among patients with congestive heart failure admitted to community hospitals: a population-based study. J Am Soc Nephrol. 2002;13(7):1928–36.
  7. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD–MBD). Kidney Int Suppl. 2009; (113):S1–130. DOI:10.1038/ki.2009.188.
  8. Ермоленко В. М., Волгина Г. В., Добронравов В. А., Рожинская Л. Я., Смирнов А. В., Томилина Н. А М. и др. Национальные рекомендации по минеральным и костным нарушениям при хронической болезни почек. Российское диализное общество (май 2010 г.). Нефрология и диализ. 2011;13 (1):33–51.
  9. Shroff R. Phosphate is a vascular toxin. Pediatr Nephrol. 2013;28(4):583–93. DOI:10.1007/s00467‑012‑2347‑x.
  10. Ellam TJ, Chico TJA. Phosphate: the new cholesterol? The role of the phosphate axis in non-uremic vascular disease. Atherosclerosis. 2012;220 (2):310–8. DOI:10.1016/j.atherosclerosis.2011.09.002.
  11. Torres PAU, De Brauwere DP. Three feedback loops precisely regulating serum phosphate concentration. Kidney Int. 2011;80 (5):443–5. DOI:10.1038/ki.2011.146.
  12. Hruska KA, Mathew S, Lund R, Qiu P, Pratt R. Hyperphosphatemia of chronic kidney disease. Kidney Int. 2008;74 (2):148–57. DOI:10.1038/ki.2008.130.
  13. Gonzalez-Parra E, Tuñón J, Egido J, Ortiz A. Phosphate: a stealthier killer than previously thought? Cardiovasc Pathol. 2012;21 (5):372–81. DOI:10.1016/j.carpath.2012.02.008.
  14. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31 (4):607–17.
  15. Palmer SC, Hayen A, Macaskill P, Pellegrini F, Craig JC, Elder GJ et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA. 2011;305(11):1119–27. DOI:10.1001/jama.2011.308.
  16. Lertdumrongluk P, Rhee CM, Park J, Lau WL, Moradi H, Jing J et al. Association of serum phosphorus concentration with mortality in elderly and nonelderly hemodialysis patients. J Ren Nutr. 2013;23 (6):411–21. DOI:10.1053/j.jrn.2013.01.018.
  17. Eddington H, Hoefield R, Sinha S, Chrysochou C, Lane B, Foley RN et al. Serum phosphate and mortality in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5 (12):2251–7. DOI:10.2215/CJN.00810110.
  18. Dominguez JR, Kestenbaum B, Chonchol M, Block G, Laughlin GA, Lewis CE et al. Relationships between serum and urine phosphorus with all-cause and cardiovascular mortality: the Osteoporotic Fractures in Men (MrOS) Study. Am J Kidney Dis. 2013;61 (4):555–63. DOI:10.1053/j.ajkd.2012.11.033.
  19. Dhingra R, Gona P, Benjamin EJ, Wang TJ, Aragam J, D’Agostino RB et al. Relations of serum phosphorus levels to echocardiographic left ventricular mass and incidence of heart failure in the community. Eur J Heart Fail. 2010;12 (8):812–8. DOI:10.1093/eurjhf/hfq106.
  20. Lippi G, Montagnana M, Salvagno GL, Targher G, Guidi GC. Relationship between serum phosphate and cardiovascular risk factors in a large cohort of adult outpatients. Diabetes Res Clin Pract. 2009;84 (1):e3–5. DOI:10.1016/j.diabres.2009.01.003.
  21. Kestenbaum BR, Adeney KL, de Boer IH, Ix JH, Shlipak MG, Siscovick DS. Incidence and progression of coronary calcification in chronic kidney disease: the Multi-Ethnic Study of Atherosclerosis. Kidney Int. 2009;76 (9):991–8. DOI:10.1038/ki.2009.298.
  22. Dominguez JR, Shlipak MG, Whooley MA, Ix JH. Fractional excretion of phosphorus modifies the association between fibroblast growth factor-23 and outcomes. J Am Soc Nephrol. 2013;24 (4):647–54. DOI:10.1681/ASN.2012090894.
  23. Scialla JJ, Wolf M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol. 2014;10 (5):268–78. DOI:10.1038/nrneph.2014.49.
  24. Phan O, Ivanovski O, Nikolov IG, Joki N, Maizel J, Louvet L et al. Effect of oral calcium carbonate on aortic calcification in apolipoprotein E-deficient (apoE- / -) mice with chronic renal failure. Nephrol Dial Transplant. 2008;23 (1):82–90. DOI:10.1093/ndt/gfm699.
  25. Kendrick J, Ix JH, Targher G, Smits G, Chonchol M. Relation of serum phosphorus levels to ankle brachial pressure index (from the Third National Health and Nutrition Examination Survey). Am J Cardiol. 2010;106 (4):564–8. DOI:10.1016/j.amjcard.2010.03.070.
  26. Kööbi P, Vehmas TI, Jolma P, Kalliovalkama J, Fan M, Niemelä O et al. High-calcium vs high-phosphate intake and small artery tone in advanced experimental renal insufficiency. Nephrol Dial Transplant. 2006;21 (10):2754–61. DOI:10.1093/ndt/gfl270.
  27. Ritz E, Wanner C. The challenge of sudden death in dialysis patients. Clin J Am Soc Nephrol. 2008;3 (3):920–9. DOI:10.2215/CJN.04571007.
  28. Kuro-o M. A potential link between phosphate and aging – lessons from Klotho-deficient mice. Mech Ageing Dev. 2010;131 (4):270–5. DOI:10.1016/j.mad.2010.02.008.
  29. Ellam T, Wilkie M, Chamberlain J, Crossman D, Eastell R, Francis S et al. Dietary phosphate modulates atherogenesis and insulin resistance in apolipoprotein E knockout mice – brief report. Arterioscler Thromb Vasc Biol. 2011;31 (9):1988–90. DOI:10.1161/ATVBAHA.111.231001.
  30. Nikolov IG, Joki N, Nguyen-Khoa T, Guerrera IC, Maizel J, Benchitrit J et al. Lanthanum carbonate, like sevelamer-HCl, retards the progression of vascular calcification and atherosclerosis in uremic apolipoprotein E-deficient mice. Nephrol Dial Transplant. 2012;27 (2):505–13. DOI:10.1093/ndt/gfr254.
  31. Evenepoel P, Meijers B, Viaene L, Bammens B, Claes K, Kuypers D et al. Fibroblast growth factor-23 in early chronic kidney disease: additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2010;5(7):1268–76. DOI:10.2215/CJN.08241109.
  32. Liu LCY, Voors AA, van Veldhuisen DJ, van der Veer E, Belonje AM, Szymanski MK et al. Vitamin D status and outcomes in heart failure patients. Eur J Heart Fail. 2011;13 (6):619–25. DOI:10.1093/eurjhf/hfr032.
  33. Kristal-Boneh E, Froom P, Harari G, Ribak J. Association of calcitriol and blood pressure in normotensive men. Hypertension. 1997;30(5):1289–94.
  34. Fitzpatrick LA, Bilezikian JP, Silverberg SJ. Parathyroid hormone and the cardiovascular system. Curr Osteoporos Rep. 2008;6 (2):77–83.
  35. Rashid G, Bernheim J, Green J, Benchetrit S. Parathyroid hormone stimulates endothelial expression of atherosclerotic parameters through protein kinase pathways. Am J Physiol Renal Physiol. 2007;292 (4):F1215–1218. DOI:10.1152/ajprenal.00406.2006.
  36. Zittermann A, Schleithoff SS, Tenderich G, Berthold HK, Körfer R, Stehle P. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol. 2003;41 (1):105–12.
  37. Kanbay M, Nicoleta M, Selcoki Y, Ikizek M, Aydin M, Eryonucu B et al. Fibroblast growth factor 23 and fetuin A are independent predictors for the coronary artery disease extent in mild chronic kidney disease. Clin J Am Soc Nephrol. 2010;5 (10):1780–6. DOI:10.2215/CJN.02560310.
  38. Khan M. AM, Chirinos JA, Litt H, Yang W, Rosas SE. FGF-23 and the progression of coronary arterial calcification in patients new to dialysis. Clin J Am Soc Nephrol. 2012;7 (12):2017–22. DOI:10.2215/CJN.02160212.
  39. Mirza A. MAI, Larsson A, Lind L, Larsson TE. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009;205 (2):385–90. DOI:10.1016/j.atherosclerosis.2009.01.001.
  40. Munoz Mendoza J, Isakova T, Ricardo AC, Xie H, Navaneethan SD, Anderson AH et al. Fibroblast growth factor 23 and Inflammation in CKD. Clin J Am Soc Nephrol. 2012;7 (7):1155–62. DOI:10.2215/CJN.13281211.
  41. Kovesdy CP, Quarles LD. The role of fibroblast growth factor-23 in cardiorenal syndrome. Nephron Clin Pract. 2013;123 (3–4):194–201. DOI:10.1159/000353593.
  42. Gutiérrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119 (19):2545–52. DOI:10.1161/CIRCULATIONAHA.108.844506.
  43. Faul C, Amaral AP, Oskouei B, Hu M–C, Sloan A, Isakova T et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121 (11):4393–408. DOI:10.1172/JCI46122.
  44. Chen X. NX, O’Neill KD, Duan D, Moe SM. Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int. 2002;62 (5):1724–31. DOI:10.1046/j.1523–1755.2002.00625.x.
  45. Plischke M, Neuhold S, Adlbrecht C, Bielesz B, Shayganfar S, Bieglmayer C et al. Inorganic phosphate and FGF-23 predict outcome in stable systolic heart failure. Eur J Clin Invest. 2012;42 (6):649–56. DOI:10.1111/j.1365–2362.2011.02631.x.
  46. Ess M, Heitmair-Wietzorrek K, Frick M, Umlauf N, Ulmer H, Poelzl G. Serum phosphate and long-term outcome among patients with stable heart failure. J Card Fail. 2013;19 (1):25–30. DOI:10.1016/j.cardfail.2012.11.008.
  47. Bech A, Blans M, Raaijmakers M, Mulkens C, Telting D, de Boer H. Hypophosphatemia on the intensive care unit: individualized phosphate replacement based on serum levels and distribution volume. J Crit Care. 2013;28 (5):838–43. DOI:10.1016/j.jcrc.2013.03.002.
  48. Squires MH, Dann GC, Lad NL, Fisher SB, Martin BM, Kooby DA et al. Hypophosphataemia after major hepatectomy and the risk of post-operative hepatic insufficiency and mortality: an analysis of 719 patients. HPB (Oxford). 2014;16 (10):884–91. DOI:10.1111/hpb.12276.
  49. Rozentryt P, Nowak J, Niedziela J, Hudzik B, Doehner W, Jankowska EA et al. Serum phosphorus level is related to degree of clinical response to up-titration of heart failure pharmacotherapy. Int J Cardiol. 2014;177(1):248–54. DOI:10.1016/j.ijcard.2014.09.034.
  50. Howard SC, Jones DP, Pui C-H. The tumor lysis syndrome. N Engl J Med. 2011;364 (19):1844–54. DOI:10.1056/NEJMra0904569.
  51. Dundar ZD, Cander B, Gul M, Karabulut KU, Kocak S, Girisgin S et al. Serum intestinal fatty acid binding protein and phosphate levels in the diagnosis of acute intestinal ischemia: an experimental study in rabbits. J Emerg Med. 2012;42 (6):741–7. DOI:10.1016/j.jemermed.2011.05.051.
  52. Shane E, Mancini D, Aaronson K, Silverberg SJ, Seibel MJ, Addesso V et al. Bone mass, vitamin D deficiency, and hyperparathyroidism in congestive heart failure. Am J Med. 1997;103 (3):197–207.
  53. Maiya S, Sullivan I, Allgrove J, Yates R, Malone M, Brain C et al. Hypocalcaemia and vitamin D deficiency: an important, but preventable, cause of life-threatening infant heart failure. Heart. 2008;94 (5):581–4. DOI:10.1136/hrt.2007.119792.
  54. Steele T, Kolamunnage-Dona R, Downey C, Toh C-H, Welters I. Assessment and clinical course of hypocalcemia in critical illness. Crit Care. 2013;17 (3):R106. DOI:10.1186/cc12756.
  55. Collage RD, Howell GM, Zhang X, Stripay JL, Lee JS, Angus DC et al. Calcium supplementation during sepsis exacerbates organ failure and mortality via calcium/calmodulin-dependent protein kinase kinase signaling. Crit Care Med. 2013;41 (11):e352–360. DOI:10.1097/CCM.0b013e31828cf436.
  56. Arakelyan P. KP, Sahakyan YA, Hayrapetyan LR, Khudaverdyan DN, Ingelman-Sundberg M, Mkrtchian S et al. Calcium-regulating peptide hormones and blood electrolytic balance in chronic heart failure. Regul Pept. 2007;142 (3):95–100. DOI:10.1016/j.regpep.2007.02.001.
  57. Garakyaraghi M, Kerdegari M, Siavash M. Calcium and vitamin D status in heart failure patients in Isfahan, Iran. Biol Trace Elem Res. 2010;135(1–3):67–73. DOI:10.1007/s12011‑009‑8492‑9.
  58. Rozentryt P, Niedziela JT, Hudzik B, Doehner W, Jankowska EA, Nowak J et al. Abnormal serum calcium levels are associated with clinical response to maximization of heart failure therapy. Pol Arch Med Wewn. 2015;125 (1–2):54–64.
  59. Garcia P, Schwenzer S, Slotta JE, Scheuer C, Tami AE, Holstein JH et al. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation – role of a local renin-angiotensin system. Br J Pharmacol. 2010;159 (8):1672–80. DOI:10.1111/j.1476–5381.2010.00651.x.
  60. Liu YY, Yao WM, Wu T, Xu BL, Chen F, Cui L. Captopril improves osteopenia in ovariectomized rats and promotes bone formation in osteoblasts. J Bone Miner Metab. 2011;29 (2):149–58. DOI:10.1007/s00774‑010‑0209‑9.
  61. Khajuria K. DK, Razdan R, Mahapatra DR, Bhat MR. Osteoprotective effect of propranolol in ovariectomized rats: a comparison with zoledronic acid and alfacalcidol. J Orthop Sci. 2013;18 (5):832–42. DOI:10.1007/s00776‑013‑0433‑y.
  62. Salcuni AS, Palmieri S, Carnevale V, Morelli V, Battista C, Guarnieri V et al. Bone involvement in aldosteronism. J Bone Miner Res. 2012;27(10):2217–22. DOI:10.1002/jbmr.1660.
  63. Cubbon RM, Thomas CH, Drozd M, Gierula J, Jamil HA, Byrom R et al. Calcium, phosphate and calcium phosphate product are markers of outcome in patients with chronic heart failure. J Nephrol. 2015;28(2):209–15. DOI:10.1007/s40620‑014‑0075‑y.
  64. Saji F, Shiizaki K, Shimada S, Okada T, Kunimoto K, Sakaguchi T et al. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron Physiol. 2009;111 (4):p59–66. DOI:10.1159/000210389.
  65. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res. 2012;318(9):1040–8. DOI:10.1016/j.yexcr.2012.02.027.
  66. Nakanishi S, Kazama JJ, Nii-Kono T, Omori K, Yamashita T, Fukumoto S et al. Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients. Kidney Int. 2005;67(3):1171–8. DOI:10.1111/j.1523–1755.2005.00184.x.
  67. Galitzer H, Ben-Dov IZ, Silver J, Naveh-Many T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int. 2010;77 (3):211–8. DOI:10.1038/ki.2009.464.
  68. Kovesdy CP, Quarles LD. Fibroblast growth factor-23: what we know, what we don»t know, and what we need to know. Nephrol Dial Transplant. 2013;28 (9):2228–36. DOI:10.1093/ndt/gft065.
  69. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16 (7):2205–15. DOI:10.1681/ASN.2005010052.
  70. Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359 (6):584–92. DOI:10.1056/NEJMoa0706130.
  71. Jean G, Terrat J-C, Vanel T, Hurot J-M, Lorriaux C, Mayor B et al. High levels of serum fibroblast growth factor (FGF) – 23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant. 2009;24 (9):2792–6. DOI:10.1093/ndt/gfp191.
  72. Nakano C, Hamano T, Fujii N, Obi Y, Matsui I, Tomida K et al. Intact fibroblast growth factor 23 levels predict incident cardiovascular event before but not after the start of dialysis. Bone. 2012;50 (6):1266–74. DOI:10.1016/j.bone.2012.02.634.
  73. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest. 2012;122 (7):2543–53. DOI:10.1172/JCI61405.
  74. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305 (23):2432–9. DOI:10.1001/jama.2011.826.
  75. Seiler S, Cremers B, Rebling NM, Hornof F, Jeken J, Kersting S et al. The phosphatonin fibroblast growth factor 23 links calcium-phosphate metabolism with left-ventricular dysfunction and atrial fibrillation. Eur Heart J. 2011;32 (21):2688–96. DOI:10.1093/eurheartj/ehr215.
  76. Shibata K, Fujita S-I, Morita H, Okamoto Y, Sohmiya K, Hoshiga M et al. Association between circulating fibroblast growth factor 23, α-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS ONE. 2013;8 (9):e73184. DOI:10.1371/journal.pone.0073184.
  77. Ix JH, Katz R, Kestenbaum BR, de Boer IH, Chonchol M, Mukamal KJ et al. Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J Am Coll Cardiol. 2012;60 (3):200–7. DOI:10.1016/j.jacc.2012.03.040.
  78. Pöss J, Mahfoud F, Seiler S, Heine GH, Fliser D, Böhm M et al. FGF-23 is associated with increased disease severity and early mortality in cardiogenic shock. Eur Heart J Acute Cardiovasc Care. 2013;2 (3):211–8. DOI:10.1177/2048872613494025.
  79. Poelzl G, Trenkler C, Kliebhan J, Wuertinger P, Seger C, Kaser S et al. FGF23 is associated with disease severity and prognosis in chronic heart failure. Eur J Clin Invest. 2014;44 (12):1150–8. DOI:10.1111/eci.12349.
  80. Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med. 2010;152(10):640–8. DOI:10.7326/0003‑4819‑152‑10‑201005180‑00004.
  81. Xie J, Cha S-K, An S-W, Kuro-O M, Birnbaumer L, Huang C–L. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012;3:1238. DOI:10.1038/ncomms2240.
  82. Zhou L, Li Y, Zhou D, Tan RJ, Liu Y. Loss of Klotho contributes to kidney injury by derepression of Wnt / β-catenin signaling. J Am Soc Nephrol. 2013;24 (5):771–85. DOI:10.1681/ASN.2012080865.
  83. Wohlfahrt P, Melenovsky V, Kotrc M, Benes J, Jabor A, Franekova J et al. Association of Fibroblast Growth Factor-23 Levels and Angiotensin-Converting Enzyme Inhibition in Chronic Systolic Heart Failure. JACC Heart Fail. 2015;3 (10):829–39. DOI:10.1016/j.jchf.2015.05.012.
  84. Zoccali C, Ruggenenti P, Perna A, Leonardis D, Tripepi R, Tripepi G et al. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J Am Soc Nephrol. 2011;22 (10):1923–30. DOI:10.1681/ASN.2011020175.
  85. Gruson D, Lepoutre T, Ketelslegers J-M, Cumps J, Ahn SA, Rousseau MF. C-terminal FGF23 is a strong predictor of survival in systolic heart failure. Peptides. 2012;37 (2):258–62. DOI:10.1016/j.peptides.2012.08.003.
  86. Карпова Н. Ю., Шостак Н. А., Рашид М. А., Казакова Т. В., Ойноткинова О. Ш. Кальцинированный аортальный стеноз [Internet]. М.: Медиа Сфера; 2011 [cited 2017]. 128 с. Available from: https://search.rsl.ru/ru/record/01004948243
  87. Näppi S, Saha H, Virtanen V, Limnell V, Sand J, Salmi J et al. Left ventricular structure and function in primary hyperparathyroidism before and after parathyroidectomy. Cardiology. 2000;93 (4):229–33. DOI:10.1159/000007031.
  88. Saleh FN, Schirmer H, Sundsfjord J, Jorde R. Parathyroid hormone and left ventricular hypertrophy. Eur Heart J. 2003;24 (22):2054–60.
  89. Hagström E, Hellman P, Larsson TE, Ingelsson E, Berglund L, Sundström J et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation. 2009;119 (21):2765–71. DOI:10.1161/CIRCULATIONAHA.108.808733.
  90. Khouzam RN, Dishmon DA, Farah V, Flax SD, Carbone LD, Weber KT. Secondary hyperparathyroidism in patients with untreated and treated congestive heart failure. Am J Med Sci. 2006;331 (1):30–4.
  91. Alsafwah S, Laguardia SP, Arroyo M, Dockery BK, Bhattacharya SK, Ahokas RA et al. Congestive heart failure is a systemic illness: a role for minerals and micronutrients. Clin Med Res. 2007;5 (4):238–43. DOI:10.3121/cmr.2007.737.
  92. Sun Y, Ahokas RA, Bhattacharya SK, Gerling IC, Carbone LD, Weber KT. Oxidative stress in aldosteronism. Cardiovasc Res. 2006;71(2):300–9. DOI:10.1016/j.cardiores.2006.03.007.
  93. Карпова Н. Ю., Шостак Н. А., Рашид М. А. Остеопороз: современное состояние проблемы. Место альфакальцидола в комплексном лечении остеопороза. М.: МЕДпресс-информ; 2014. 30 с.
  94. Beveridge LA, Witham MD. Vitamin D and the cardiovascular system. Osteoporos Int. 2013;24 (8):2167–80. DOI:10.1007/s00198‑013‑2281‑1.
  95. Al Mheid I, Patel RS, Tangpricha V, Quyyumi AA. Vitamin D and cardiovascular disease: is the evidence solid? Eur Heart J. 2013;34(48):3691–8. DOI:10.1093/eurheartj/eht166.
  96. Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE et al. The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev. 2012;33 (3):456–92. DOI:10.1210/er.2012–1000.
  97. Haussler R. MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR) – mediated actions of 1α,25(OH)₂ vitamin D₃: genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab. 2011;25 (4):543–59. DOI:10.1016/j.beem.2011.05.010.
  98. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80 (6 Suppl): 1689S – 96S.
  99. Zhao G, Simpson RU. Membrane localization, Caveolin-3 association and rapid actions of vitamin D receptor in cardiac myocytes. Steroids. 2010;75 (8–9):555–9. DOI:10.1016/j.steroids.2009.12.001.
  100. Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88 (2):491S–499S.
  101. Giovannucci E. The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control. 2005;16 (2):83–95. DOI:10.1007/s10552‑004‑1661‑4.
  102. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357 (3):266–81. DOI:10.1056/NEJMra070553.
  103. Wang J, Luben R, Khaw K-T, Bingham S, Wareham NJ, Forouhi NG. Dietary energy density predicts the risk of incident type 2 diabetes: the European Prospective Investigation of Cancer (EPIC) – Norfolk Study. Diabetes Care. 2008;31 (11):2120–5. DOI:10.2337/dc08–1085.
  104. Melamed L. ML, Michos ED, Post W, Astor B. 25‑hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med. 2008;168 (15):1629–37. DOI:10.1001/archinte.168.15.1629.
  105. Chen S, Law CS, Grigsby CL, Olsen K, Hong T-T, Zhang Y et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation. 2011;124 (17):1838–47. DOI:10.1161/CIRCULATIONAHA.111.032680.
  106. Zehnder D, Bland R, Chana RS, Wheeler DC, Howie AJ, Williams MC et al. Synthesis of 1,25‑dihydroxyvitamin D(3) by human endothelial cells is regulated by inflammatory cytokines: a novel autocrine determinant of vascular cell adhesion. J Am Soc Nephrol. 2002;13 (3):621–9.
  107. O'Connell TD, Berry JE, Jarvis AK, Somerman MJ, Simpson RU. 1,25‑Dihydroxyvitamin D3 regulation of cardiac myocyte proliferation and hypertrophy. Am J Physiol. 1997;272 (4 Pt 2):H1751–1758. DOI:10.1152/ajpheart.1997.272.4.H1751.
  108. Simpson RU. Selective knockout of the vitamin d receptor in the heart results in cardiac hypertrophy: is the heart a drugable target for vitamin D receptor agonists? Circulation. 2011;124 (17):1808–10. DOI:10.1161/CIRCULATIONAHA.111.061234.
  109. Xiang W, Kong J, Chen S, Cao L-P, Qiao G, Zheng W et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am J Physiol Endocrinol Metab. 2005;288 (1):E125–132. DOI:10.1152/ajpendo.00224.2004.
  110. Mancuso P, Rahman A, Hershey SD, Dandu L, Nibbelink KA, Simpson RU. 1,25‑Dihydroxyvitamin-D3 treatment reduces cardiac hypertrophy and left ventricular diameter in spontaneously hypertensive heart failure-prone (cp / +) rats independent of changes in serum leptin. J Cardiovasc Pharmacol. 2008;51 (6):559–64. DOI:10.1097/FJC.0b013e3181761906.
  111. Bodyak N, Ayus JC, Achinger S, Shivalingappa V, Ke Q, Chen Y-S et al. Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc Natl Acad Sci USA. 2007;104 (43):16810–5. DOI:10.1073/pnas.0611202104.
  112. Merke J, Milde P, Lewicka S, Hügel U, Klaus G, Mangelsdorf DJ et al. Identification and regulation of 1,25‑dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25‑dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest. 1989;83 (6):1903–15. DOI:10.1172/JCI114097.
  113. Talmor Y, Golan E, Benchetrit S, Bernheim J, Klein O, Green J et al. Calcitriol blunts the deleterious impact of advanced glycation end products on endothelial cells. Am J Physiol Renal Physiol. 2008;294 (5):F1059–1064. DOI:10.1152/ajprenal.00051.2008.
  114. Martinesi M, Bruni S, Stio M, Treves C. 1,25‑Dihydroxyvitamin D3 inhibits tumor necrosis factor-alpha-induced adhesion molecule expression in endothelial cells. Cell Biol Int. 2006;30 (4):365–75. DOI:10.1016/j.cellbi.2006.01.004.
  115. Raymond M-A, Désormeaux A, Labelle A, Soulez M, Soulez G, Langelier Y et al. Endothelial stress induces the release of vitamin D-binding protein, a novel growth factor. Biochem Biophys Res Commun. 2005;338 (3):1374–82. DOI:10.1016/j.bbrc.2005.10.105.
  116. Wong S. MSK, Delansorne R, Man RYK, Vanhoutte PM. Vitamin D derivatives acutely reduce endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2008;295 (1):H289–296. DOI:10.1152/ajpheart.00116.2008.
  117. Takeda M, Yamashita T, Sasaki N, Nakajima K, Kita T, Shinohara M et al. Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arterioscler Thromb Vasc Biol. 2010;30 (12):2495–503. DOI:10.1161/ATVBAHA.110.215459.
  118. Oh J, Weng S, Felton SK, Bhandare S, Riek A, Butler B et al. 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation. 2009;120 (8):687–98. DOI:10.1161/CIRCULATIONAHA.109.856070.
  119. Quyyumi AA, Patel RS. Endothelial dysfunction and hypertension: cause or effect? Hypertension. 2010;55 (5):1092–4. DOI:10.1161/HYPERTENSIONAHA.109.148957.
  120. Pirro M, Manfredelli MR, Helou RS, Scarponi AM, Schillaci G, Bagaglia F et al. Association of parathyroid hormone and 25‑OH-vitamin D levels with arterial stiffness in postmenopausal women with vitamin D insufficiency. J Atheroscler Thromb. 2012;19 (10):924–31.
  121. Lee J-I, Oh S-J, Ha W-C, Kwon H-S, Sohn T-S, Son H-S et al. Serum 25‑hydroxyvitamin D concentration and arterial stiffness among type 2 diabetes. Diabetes Res Clin Pract. 2012;95 (1):42–7. DOI:10.1016/j.diabres.2011.09.006.
  122. Reynolds A. JA, Haque S, Berry JL, Pemberton P, Teh L-S, Ho P et al. 25‑Hydroxyvitamin D deficiency is associated with increased aortic stiffness in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2012;51 (3):544–51. DOI:10.1093/rheumatology/ker352.
  123. Zagura M, Serg M, Kampus P, Zilmer M, Eha J, Unt E et al. Aortic stiffness and vitamin D are independent markers of aortic calcification in patients with peripheral arterial disease and in healthy subjects. Eur J Vasc Endovasc Surg. 2011;42 (5):689–95. DOI:10.1016/j.ejvs.2011.07.027.
  124. Giallauria F, Milaneschi Y, Tanaka T, Maggio M, Canepa M, Elango P et al. Arterial stiffness and vitamin D levels: the Baltimore longitudinal study of aging. J Clin Endocrinol Metab. 2012;97 (10):3717–23. DOI:10.1210/jc.2012–1584.
  125. Dobnig H, Pilz S, Scharnagl H, Renner W, Seelhorst U, Wellnitz B et al. Independent association of low serum 25‑hydroxyvitamin D and 1,25‑dihydroxyvitamin D levels with all-cause and cardiovascular mortality. Arch Intern Med. 2008;168 (12):1340–9. DOI:10.1001/archinte.168.12.1340.
  126. Artaza JN, Mehrotra R, Norris KC. Vitamin D and the cardiovascular system. Clin J Am Soc Nephrol. 2009;4 (9):1515–22. DOI:10.2215/CJN.02260409.
  127. Li YC, Kong J, Wei M, Chen Z-F, Liu SQ, Cao L-P. 1,25‑Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110 (2):229–38. DOI:10.1172/JCI15219.
  128. Tomaschitz A, Pilz S, Ritz E, Grammer T, Drechsler C, Boehm BO et al. Independent association between 1,25‑dihydroxyvitamin D, 25‑hydroxyvitamin D and the renin-angiotensin system: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chim Acta. 2010;411 (17–18):1354–60. DOI:10.1016/j.cca.2010.05.037.
  129. Forman JP, Williams JS, Fisher NDL. Plasma 25‑hydroxyvitamin D and regulation of the renin-angiotensin system in humans. Hypertension. 2010;55 (5):1283–8. DOI:10.1161/HYPERTENSIONAHA.109.148619.
  130. Vaidya A, Sun B, Larson C, Forman JP, Williams JS. Vitamin D3 therapy corrects the tissue sensitivity to angiotensin ii akin to the action of a converting enzyme inhibitor in obese hypertensives: an interventional study. J Clin Endocrinol Metab. 2012;97(7):2456–65. DOI:10.1210/jc.2012–1156.
  131. Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25‑hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168 (11):1174–80. DOI:10.1001/rchinte.168.11.1174.
  132. Kempker JA, Tangpricha V, Ziegler TR, Martin GS. Vitamin D in sepsis: from basic science to clinical impact. Crit Care. 2012;16 (4):316. DOI:10.1186/cc11252.
  133. Forouhi NG, Luan J, Cooper A, Boucher BJ, Wareham NJ. Baseline serum 25‑hydroxy vitamin d is predictive of future glycemic status and insulin resistance: the Medical Research Council Ely Prospective Study 1990–2000. Diabetes. 2008;57 (10):2619–25. DOI:10.2337/db08–0593.
  134. Pilz S, Tomaschitz A, Ritz E, Pieber TR. Vitamin D status and arterial hypertension: a systematic review. Nat Rev Cardiol. 2009;6 (10):621–30. DOI:10.1038/nrcardio.2009.135.
  135. Vaidya A, Williams JS. The relationship between vitamin D and the renin-angiotensin system in the pathophysiology of hypertension, kidney disease, and diabetes. Metab Clin Exp. 2012;61 (4):450–8. DOI:10.1016/j.metabol.2011.09.007.
  136. Pasco JA, Henry MJ, Nicholson GC, Brennan SL, Kotowicz MA. Behavioural and physical characteristics associated with vitamin D status in women. Bone. 2009;44 (6):1085–91. DOI:10.1016/j.bone.2009.02.020.
  137. Forman JP, Giovannucci E, Holmes MD, Bischoff-Ferrari HA, Tworoger SS, Willett WC et al. Plasma 25‑hydroxyvitamin D levels and risk of incident hypertension. Hypertension. 2007;49 (5):1063–9. DOI:10.1161/HYPERTENSIONAHA.107.087288.
  138. Forman JP, Curhan GC, Taylor EN. Plasma 25‑hydroxyvitamin D levels and risk of incident hypertension among young women. Hypertension. 2008;52 (5):828–32. DOI:10.1161/HYPERTENSIONAHA.108.117630.
  139. Hirani V. Relationship between vitamin D and hyperglycemia in older people from a nationally representative population survey. J Am Geriatr Soc. 2011;59 (10):1786–92. DOI:10.1111/j.1532–5415.2011.03590.x.
  140. Ignat M, Teletin M, Tisserand J, Khetchoumian K, Dennefeld C, Chambon P et al. Arterial calcifications and increased expression of vitamin D receptor targets in mice lacking TIF1alpha. Proc Natl Acad Sci USA. 2008;105 (7):2598–603. DOI:10.1073/pnas.0712030105.
  141. Young KA, Snell-Bergeon JK, Naik RG, Hokanson JE, Tarullo D, Gottlieb PA et al. Vitamin D deficiency and coronary artery calcification in subjects with type 1 diabetes. Diabetes Care. 2011;34 (2):454–8. DOI:10.2337/dc10–0757.
  142. Ketteler M, Martin KJ, Cozzolino M, Goldsmith D, Sharma A, Khan S et al. Paricalcitol versus cinacalcet plus low-dose vitamin D for the treatment of secondary hyperparathyroidism in patients receiving haemodialysis: study design and baseline characteristics of the IMPACT SHPT study. Nephrol Dial Transplant. 2012;27 (5):1942–9. DOI:10.1093/ndt/gfr531.
  143. Kovesdy CP, Kalantar-Zadeh K. Vitamin D receptor activation and survival in chronic kidney disease. Kidney Int. 2008;73 (12):1355–63. DOI:10.1038/ki.2008.35.
  144. Wu SH, Ho SC, Zhong L. Effects of vitamin D supplementation on blood pressure. South Med J. 2010;103 (8):729–37. DOI:10.1097/SMJ.0b013e3181e6d389.
  145. Elamin MB, Abu Elnour NO, Elamin KB, Fatourechi MM, Alkatib AA, Almandoz JP et al. Vitamin D and cardiovascular outcomes: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(7):1931–42. DOI:10.1210/jc.2011–0398.
  146. Weber KT, Rosenberg EW, Sayre RM, Rapid Precision Testing Laboratories. Suberythemal ultraviolet exposure and reduction in blood pressure. Am J Med. 2004;117 (4):281–2. DOI:10.1016/j.amjmed.2004.03.016.
  147. Ergenekon E, Gücüyener K, Dursun H, Erbaş D, Oztürk G, Koç E et al. Nitric oxide production in newborns under phototherapy. Nitric Oxide. 2002;6 (1):69–72. DOI:10.1006/niox.2001.0364.
  148. Büyükafşar K, Levent A, Un I, Ark M, Arikan O, Ozveren E. Mediation of nitric oxide from photosensitive stores in the photorelaxation of the rabbit corpus cavernosum. Eur J Pharmacol. 2003;459 (2–3):263–7.
  149. Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women»s Health Initiative limited access dataset and meta-analysis. BMJ. 2011;342: d2040.
  150. Bjelakovic G, Gluud LL, Nikolova D, Whitfield K, Wetterslev J, Simonetti RG et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev. 2014; (1):CD007470. DOI:10.1002/14651858.CD007470.pub3.
  151. Thieden E, Jørgensen HL, Jørgensen NR, Philipsen PA, Wulf HC. Sunbed radiation provokes cutaneous vitamin D synthesis in humans a randomized controlled trial. Photochem Photobiol. 2008;84 (6):1487–92. DOI:10.1111/j.1751–1097.2008.00372.x.
  152. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80 (6 Suppl): 1678S – 88S.
  153. Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83 (4):754–9.
  154. Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z et al. Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol. 2004;287 (5):H2023–2026. DOI:10.1152/ajpheart.00477.2004.
  155. Abou-Raya S, Abou-Raya A. Osteoporosis and congestive heart failure (CHF) in the elderly patient: double disease burden. Arch Gerontol Geriatr. 2009;49 (2):250–4. DOI:10.1016/j.archger.2008.09.004.
  156. Лесняк О. М., Торопцова Н. В. Диагностика, лечение и профилактика остеопороза в общей врачебной практике. Клинические рекомендации. Российский Семейный Врач. 2014;18 (4):4–17.
  157. Rahmani P, Morin S. Prevention of osteoporosis-related fractures among postmenopausal women and older men. CMAJ. 2009;181(11):815–20. DOI:10.1503/cmaj.080709.
  158. Anker SD, Steinborn W, Strassburg S. Cardiac cachexia. Ann Med. 2004;36 (7):518–29. DOI:10.1080/07853890410017467.
  159. Bia M. Evaluation and management of bone disease and fractures post transplant. Transplant Rev (Orlando). 2008;22 (1):52–61. DOI:10.1016/j.trre.2007.09.001.
  160. Loncar G, Fülster S, von Haehling S, Popovic V. Metabolism and the heart: an overview of muscle, fat, and bone metabolism in heart failure. Int J Cardiol. 2013;162 (2):77–85. DOI:10.1016/j.ijcard.2011.09.079.
  161. Сторожаков И. Г. И., Резник Е. В., Гендлин Г. Е., Хрипун А. И. Взаимосвязь остеопороза и заболеваний сердечно-сосудистой системы. Российский Медицинский Журнал. 2011; (3):34–41.
  162. Jankowska A. EA, Jakubaszko J, Cwynar A, Majda J, Ponikowska B, Kustrzycka-Kratochwil D et al. Bone mineral status and bone loss over time in men with chronic systolic heart failure and their clinical and hormonal determinants. Eur J Heart Fail. 2009;11 (1):28–38. DOI:10.1093/eurjhf/hfn004.
  163. Frost J. RJA, Sonne C, Wehr U, Stempfle H-U. Effects of calcium supplementation on bone loss and fractures in congestive heart failure. Eur J Endocrinol. 2007;156 (3):309–14. DOI:10.1530/EJE-06–0614.
  164. von Haehling S, Lainscak M, Doehner W, Ponikowski P, Rosano G, Jordan J et al. Diabetes mellitus, cachexia and obesity in heart failure: rationale and design of the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). J Cachexia Sarcopenia Muscle. 2010;1(2):187–94. DOI:10.1007/s13539‑010‑0013‑3.
  165. Bozic B, Loncar G, Prodanovic N, Radojicic Z, Cvorovic V, Dimkovic S et al. Relationship between high circulating adiponectin with bone mineral density and bone metabolism in elderly males with chronic heart failure. J Card Fail. 2010;16 (4):301–7. DOI:10.1016/j.cardfail.2009.12.015.
  166. van Diepen S, Majumdar SR, Bakal JA, McAlister FA, Ezekowitz JA. Heart failure is a risk factor for orthopedic fracture: a population-based analysis of 16,294 patients. Circulation. 2008;118 (19):1946–52. DOI:10.1161/CIRCULATIONAHA.108.784009.
  167. Carbone L, Buzková P, Fink HA, Lee JS, Chen Z, Ahmed A et al. Hip fractures and heart failure: findings from the Cardiovascular Health Study. Eur Heart J. 2010;31 (1):77–84. DOI:10.1093/eurheartj/ehp483.
  168. Kestenbaum B, Glazer NL, Köttgen A, Felix JF, Hwang S-J, Liu Y et al. Common genetic variants associate with serum phosphorus concentration. J Am Soc Nephrol. 2010;21 (7):1223–32. DOI:10.1681/ASN.2009111104.
  169. Noori N, Kalantar-Zadeh K, Kovesdy CP, Bross R, Benner D, Kopple JD. Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients. Clin J Am Soc Nephrol. 2010;5 (4):683–92. DOI:10.2215/CJN.08601209.
  170. Burnett S-AM, Gunawardene SC, Bringhurst FR, Jüppner H, Lee H, Finkelstein JS. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21 (8):1187–96. DOI:10.1359/jbmr.060507.
  171. Vervloet G. MG, van Ittersum FJ, Büttler RM, Heijboer AC, Blankenstein MA, ter Wee PM. Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clin J Am Soc Nephrol. 2011;6 (2):383–9. DOI:10.2215/CJN.04730510.
  172. Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS, Trevino LL et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6 (2):257–64. DOI:10.2215/CJN.05040610.
  173. Scialla JJ, Appel LJ, Wolf M, Yang W, Zhang X, Sozio SM et al. Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: the Chronic Renal Insufficiency Cohort study. J Ren Nutr. 2012;22 (4):379–388.e1. DOI:10.1053/j.jrn.2012.01.026.
  174. Gutiérrez OM. Sodium- and phosphorus-based food additives: persistent but surmountable hurdles in the management of nutrition in chronic kidney disease. Adv Chronic Kidney Dis. 2013;20 (2):150–6. DOI:10.1053/j.ackd.2012.10.008.
  175. De Lorenzo A, Noce A, Bigioni M, Calabrese V, Della Rocca DG, Di Daniele N et al. The effects of Italian Mediterranean organic diet (IMOD) on health status. Curr Pharm Des. 2010;16 (7):814–24.
  176. Смирнов А. В. Национальные рекомендации. Хроническая болезнь почек: основные принципы скрининга, диагностики, профилактики и подходы к лечению. Санкт-Петербург: Левша; 2012. 54 с.
  177. Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M, Spiegel DM et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol. 2012;23 (8):1407–15. DOI:10.1681/ASN.2012030223.
  178. Isakova T, Barchi-Chung A, Enfield G, Smith K, Vargas G, Houston J et al. Effects of dietary phosphate restriction and phosphate binders on FGF23 levels in CKD. Clin J Am Soc Nephrol. 2013;8 (6):1009–18. DOI:10.2215/CJN.09250912.
  179. Gonzalez-Parra E, Gonzalez-Casaus ML, Galán A, Martinez-Calero A, Navas V, Rodriguez M et al. Lanthanum carbonate reduces FGF23 in chronic kidney disease Stage 3 patients. Nephrol Dial Transplant. 2011;26 (8):2567–71. DOI:10.1093/ndt/gfr144.
  180. Chue CD, Townend JN, Moody WE, Zehnder D, Wall NA, Harper L et al. Cardiovascular effects of sevelamer in stage 3 CKD. J Am Soc Nephrol. 2013;24 (5):842–52. DOI:10.1681/ASN.2012070719.
  181. Covic A, Passlick-Deetjen J, Kroczak M, Büschges-Seraphin B, Ghenu A, Ponce P et al. A comparison of calcium acetate/magnesium carbonate and sevelamer-hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled, randomized study. Nephrol Dial Transplant. 2013;28 (9):2383–92. DOI:10.1093/ndt/gft203.
  182. Seifert ME, de las Fuentes L, Rothstein M, Dietzen DJ, Bierhals AJ, Cheng SC et al. Effects of phosphate binder therapy on vascular stiffness in early-stage chronic kidney disease. Am J Nephrol. 2013;38 (2):158–67. DOI:10.1159/000353569.
  183. Spatz C, Roe K, Lehman E, Verma N. Effect of a non-calcium-based phosphate binder on fibroblast growth factor 23 in chronic kidney disease. Nephron Clin Pract. 2013;123 (1–2):61–6. DOI:10.1159/000351811.
  184. Isakova T, Gutiérrez OM, Smith K, Epstein M, Keating LK, Jüppner H et al. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol Dial Transplant. 2011;26 (2):584–91. DOI:10.1093/ndt/gfq419.
  185. Suki WN, Zabaneh R, Cangiano JL, Reed J, Fischer D, Garrett L et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 2007;72 (9):1130–7. DOI:10.1038/sj.ki.5002466.
  186. Ix JH, Ganjoo P, Tipping D, Tershakovec AM, Bostom AG. Sustained hypophosphatemic effect of once-daily niacin / laropiprant in dyslipidemic CKD stage 3 patients. Am J Kidney Dis. 2011;57 (6):963–5. DOI:10.1053/j.ajkd.2011.03.010.
  187. Maccubbin D, Tipping D, Kuznetsova O, Hanlon WA, Bostom AG. Hypophosphatemic effect of niacin in patients without renal failure: a randomized trial. Clin J Am Soc Nephrol. 2010;5 (4):582–9. DOI:10.2215/CJN.07341009.
  188. Soriano S, Ojeda R, Rodríguez M, Almadén Y, Rodríguez M, Martín-Malo A et al. The effect of phosphate binders, calcium and lanthanum carbonate on FGF23 levels in chronic kidney disease patients. Clin Nephrol. 2013;80 (1):17–22. DOI:10.5414/CN107764.
  189. Koiwa F, Kazama JJ, Tokumoto A, Onoda N, Kato H, Okada T et al. Sevelamer hydrochloride and calcium bicarbonate reduce serum fibroblast growth factor 23 levels in dialysis patients. Ther Apher Dial. 2005;9(4):336–9. DOI:10.1111/j.1744–9987.2005.00293.x.
  190. Finch JL, Tokumoto M, Nakamura H, Yao W, Shahnazari M, Lane N et al. Effect of paricalcitol and cinacalcet on serum phosphate, FGF-23, and bone in rats with chronic kidney disease. Am J Physiol Renal Physiol. 2010;298 (6):F1315–1322. DOI:10.1152/ajprenal.00552.2009.
  191. Wetmore JB, Liu S, Krebill R, Menard R, Quarles LD. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin J Am Soc Nephrol. 2010;5 (1):110–6. DOI:10.2215/CJN.03630509.
  192. EVOLVE Trial Investigators, Chertow GM, Block GA, Correa-Rotter R, Drüeke TB, Floege J et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367 (26):2482–94. DOI:10.1056/NEJMoa1205624.
  193. Wöhrle S, Henninger C, Bonny O, Thuery A, Beluch N, Hynes NE et al. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates  FGF23‑mediated hypophosphatemic rickets. J Bone Miner Res. 2013;28 (4):899–911. DOI:10.1002/jbmr.1810.
Резник Е. В., Никитин И. Г. Минеральные и костные нарушения при хронической сердечной недостаточности. Кардиология. 2018;58(S2):42–62

Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
Ru En