2018


Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
2018/№3

Дисфункциональные липопротеины высокой плотности: роль в атерогенезе и потенциальные мишени для фосфолипидной терапии

Торховская Т. И., Кудинов В. А., Захарова Т. С., Маркин С. С.
ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В. Н. Ореховича», Москва

Ключевые слова: липопротеины высокой плотности, клеточный холестерин, макрофаги, липидомика, фосфолипиды

DOI: 10.18087/cardio.2018.3.10101

В последние годы резко увеличилось число публикаций, посвященных нарушениям у больных атеросклерозом свойств липопротеинов высокой плотности (ЛВП) – в первую очередь способности акцептировать холестерин (ХС) из макрофагов, лежащей в основе их антиатерогенного действия. Это свойство оценивали ex vivo – по активности выхода ХС из клеток к ЛВП или в сыворотку обследуемых больных. Показана обратная связь ХС-акцепторной активности ЛВП с тяжестью атеросклеротического заболевания или частотой его обострения в течение длительных периодов наблюдения, независимо от концентрации ХС ЛВП. Результаты этих исследований привели к появлению концепции о важности «не только количества, но и качества ЛВП», т. е. их функциональности. В настоящем обзоре рассмотрены пути выведения ХС из клеток (с участием клеточных белков), методические подходы, используемые для выявления дисфункциональных ЛВП, результаты исследований у различных категорий больных. Приведены данные разных авторов по выявлению механизмов нарушений свойств ЛВП путем изучения их состава, включая протеомные и липидомные подходы. Определенных доказанных мишеней для коррекции дисфункциональности ЛВП в настоящее время нет. Единственный фактор, отмечаемый многими авторами, это существенная роль фосфолипидов (ФЛ) ЛВП, уровень которых коррелирует с активностью выведения клеточного ХС. Это позволяет по‑новому взглянуть на применявшуюся ранее фосфолипидную терапию атеросклероза. Механизм ее заключается, по‑видимому, не в снижении уровня ХС в плазме крови, как ожидалось, а в улучшении антиатерогенных свойств ЛВП. Для практического ее применения необходима разработка принципиально новых композиций с высокой биодоступностью ФЛ, обогащающих ЛВП, нормализуя их способность к выведению ХС из тканей.
  1. Annema W., von Eckardstein A. High-density lipoproteins. Multifunctional but vulnerable protections from atherosclerosis. Circ J 2013;77 (10):2432–2448.
  2. Camont L., Lhomme M., Rached F. et al. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler Thromb Vasc Biol 2013;33 (12):2715–2723. DOI: 10.1161/ATVBAHA.113.301468.
  3. Agarwala A. P., Rodrigues A., Risman M. et al. High-Density Lipoprotein (HDL) Phospholipid Content and Cholesterol Efflux Capacity Are Reduced in Patients With Very High HDL Cholesterol and Coronary Disease. Arterioscler Thromb Vasc Biol 2015;35 (6):1515–1519. DOI: 10.1161/ATVBAHA.115.305504.
  4. Rosenson R. The High-Density Lipoprotein Puzzle: Why Classic Epidemiology, Genetic Epidemiology, and Clinical Trials Conflict? Arterioscler Thromb Vasc Biol 2016;36 (5):777–782. DOI: 10.1161/ATVBAHA.116.307024
  5. Okamoto H., Yonemori F., Wakitani K. et al. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 2000;406 (6792):203–207.
  6. Rothblat G. H., Phillips M. C. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol 2010;21 (3):229–238.
  7. Bhatt A., Rohatgi A. HDL Cholesterol Efflux Capacity: Cardiovascular Risk Factor and Potential Therapeutic Target. Curr Atheroscler Rep 2016;18 (1):2. DOI: 10.1007/s11883‑015‑0554‑1
  8. Khera A. V., Cuchel M., de la Llera-Moya M. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011;364 (2):127–135. DOI: 10.1056/NEJMoa1001689
  9. Rothblat G. H., de la Llera-Moya M., Atger V. et al. Cell cholesterol efflux: integration of old and new observations provided new insights. J Lipid Res 1999;40:781–796.
  10. Khera A. V., Rader D. J. Cholesterol efflux capacity: full steam ahead or a bump in the road? Arterioscler Thromb Vasc Biol 2013;33:1449–1451. DOI: 10.1161/ATVBAHA.113.301519.
  11. Zhang J., Xu J., Wang J. et al. Prognostic Usefulness of Serum Cholesterol Efflux Capacity in Patients With Coronary Artery Disease. Am J Cardiol 2016;117 (4):508–514. DOI: 10.1016/j.amjcard.2015.11.033.
  12. Ishikawa T., Ayaori M., Uto-Kondo H. et al. High-density lipoprotein cholesterol efflux capacity as a relevant predictor of atherosclerotic coronary disease. Atherosclerosis 2015;242 (1):318–322. DOI: 10.1016/j.atherosclerosis.2015.06.028.
  13. Ogura M., Hori M., Harada-Shiba M. Association between cholesterol efflux capacity and atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2016;36 (1):181–188. DOI: 10.1161/ATVBAHA.115.306665.
  14. Borja M. S., Ng K. F., Irwin A. et al. HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity. J Lipid Res 2015;56 (10):2002–2009. DOI: 10.1194/jlr.M059865.
  15. Hafiane A., Genest J. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk. BBA Clin 2015;3:175–188. DOI: 10.1016/j.bbacli.2015.01.005.
  16. Rohatgi A. High-Density Lipoprotein Function Measurement in Human Studies: Focus on Cholesterol Efflux Capacity. Progress in cardiovascular diseases 2015;58:32–40.
  17. Hutchins P. M., Heinecke J. W. Cholesterol efflux capacity, macrophage reverse cholesterol transport and cardioprotective HDL. Curr Opin Lipidol 2015;26 (5):388–393.
  18. Saleheen D., Scott R., Javad S. et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol 2015;3(7):507–513. DOI: 10.1016/S2213–8587(15)00126
  19. Li X. M., Tang W. H., Mosior M. et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler Thromb Vasc Biol 2013;33 (7):1696–1705. DOI:10.1161/ ATVBAHA.113.301373.
  20. Tsun J. G, Shiu S. W., Wong Y. et al. Impact of serum amyloid A on cellular cholesterol efflux to serum in type 2 diabetes mellitus. Atherosclerosis 2013;231 (2):405–410. DOI: 10.1016/j.atherosclerosis.2013.10.008
  21. Rohatgi A., Khera A., Berry J. D. et al. HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events N Engl J Med 2014;371:2383–2393. DOI: 10.1056/NEJMoa140906527
  22. Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem 2014;289 (35):24020–24029. DOI: 10.1074/jbc.R114.583658.
  23. Sankaranarayanan S., Oram J. F., Asztalos B. F. et al. Effects of acceptor composition and mechanism of ABCG1‑mediated cellular free cholesterol efflux. J Lipid Res 2009;50:275–284.
  24. Tarling E. J., Edwards P. A. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci USA 2011;108:19719–19724.
  25. Ivan-Charvet L., Ranalletta M., Wang N. et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 2007;117:3900–3908.
  26. Holzer M., Birner-Gruenberger R., Stojakovic T. et al. Uremia alters HDL composition and function. J Ame Soc Nephrol 2011;22(9):1631–1641.
  27. de la Llera-Moya M., Rothblat G. H., Connelly M. A. et al. Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface. J Lipid Res 1999;40:575–580.
  28. Plebanek M. P, Mutharasan R. K., Volpert O. et al. Nanoparticle targeting and cholesterol flux through scavenger receptor type b-1 inhibits cellular exosome uptake. Sci Rep 2015;5:15724. DOI: 10.1038/srep15724.
  29. Yancey P. G., de la Llera-Moya M., Swarnakar S. et al. High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI J Biol Chem 2000;275:36596–36604.
  30. Sankaranarayanan S., de la Llera-Moya M., Drazul-Schrader D. et al. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells. J Lipid Res 2013;54 (3):671–676.
  31. Gillotte K. L., Zaiou M., Lund-Katz S. et al. Apolipoproteinmediated plasma membrane microsolubilization: role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid. J Biol Chem 1999;274:2021–2028.
  32. Doonan R. J., Hafiane A., Lai C. et al. Cholesterol efflux capacity, carotid atherosclerosis, and cerebrovascular symptomatology. Arterioscler Thromb Vasc Biol 2014;34 (4):921–926. DOI: 10.1161/ATVBAHA.113.302590.
  33. Chadwick A. C., Holme R. L., Chen Y. et al. Acrolein impairs the cholesterol transport functions of high density lipoproteins. PLoS One 2015;10 (4):e0123138. DOI: 10.1371/journal.pone.0123138.
  34. Fournier N., Paul J. L., Atger V. et al. HDL phospholipid content and composition as a major factor determining cholesterol efflux capacity from Fu5AH cells to human serum. Arterioscler Thromb Vasc Biol 1997;17 (11):2685–2689.
  35. Rached F., Lhomme M., Camont L. et al. Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: Relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A. Biochim Biophys Acta 2015;1851 (9):1254–1261. DOI: 10.1016/j.bbalip.2015.05.007.
  36. de la Llera-Moya M., Drazul-Schrader D., Asztalos B. F. et al. The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages. Arterioscler Thromb Vasc Biol 2010;30:796–801.
  37. Yamamoto S., Yancey P. G., Ikizler T. A. et al. Dysfunctional highdensity lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol 2012;60:2372–2379.
  38. Nestel P., Hoang A., Sviridov D., Straznicky N.Cholesterol efflux from macrophages is influenced differentially by plasmas from overweight insulin-sensitive and -resistant subjects. Int J Obes (Lond) 2012;36 (3):407–413. DOI: 10.1038/ijo.2011.170.
  39. Khera A. V., Millar J. S., Ruotolo G. et al. Potent peroxisome proliferator-activated receptor-α agonist treatment increases cholesterol efflux capacity in humans with the metabolic syndrome. Eur Heart J 2015;36 (43):3020–3022. DOI: 10.1093/eurheartj/ehv291.
  40. Hafiane A., Genest J. HDL–Mediated Cellular Cholesterol Efflux Assay Method. Ann Clin Lab Sci 2015;45 (6):659–668.
  41. Sankaranarayanan S., Oram J. F., Asztalos B. F. et al. Effects of acceptor composition and mechanism of ABCG1‑mediated cellular free cholesterol efflux. J Lipid Res 2009;50 (2):275–284. DOI: 10.1194/jlr.M800362‑JLR200
  42. Kontush A., Lindahl M., Lhomme M., Calabresi. L. Structure of HDL: Particle Subclasses and Molecular Components. In: High Density Lipoproteins: From Biological Understanding to Clinical Exploitation. Eckardstein A., Kardassis D. Eds. Springer Cham Heidelberg New York Dordrecht London. Handb. Exp. Pharmacol. 2015;224:3–52. DOI 10.1007/978‑3‑319‑09665‑0
  43. Vaisar T., Tang C., Babenko I. et al. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity. J Lipid Res 2015;56 (8):1519–1530. DOI: 10.1194/jlr.M059089
  44. Pamir N., Hutchins P., Ronsein G. et al. Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway. J Lipid Res 2016;57 (2):246–257. DOI: 10.1194/jlr.M063701
  45. Salazar J., Olivar L. C., Ramos E. et al. Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics. Cholesterol 2015;2015:296417. DOI: 10.1155/2015/296417.
  46. Holzer M., Trieb M., Konya V. et al. Aging affects high-density lipoprotein composition and function. Biochim Biophys Acta 2013;1831 (9):1442–1448. DOI: 10.1016/j.bbalip.2013.06.004
  47. Kostara C. E., Papathanasiou A., Psychogios N. et al. NMR-based lipidomic analysis of blood lipoproteins differentiates the progression of coronary heart disease. J Proteome Res 2014;13 (5):2585–2598. DOI: 10.1021/pr500061n
  48. Morgantini C., Meriwether D., Baldi S. et al. HDL lipid composition is profoundly altered in patients with type 2 diabetes and atherosclerotic vascular disease. Nutr Metab Cardiovasc Dis 2014;24(6):594–599. DOI: 10.1016/j.numecd.2013.12.011
  49. Sattler K., Lehmann I., Gräler M. et al. HDL-bound sphingosine 1‑phosphate (S1P) predicts the severity of coronary artery atherosclerosis. Cell Physiol Biochem 2014;34 (1):172–184.
  50. Torhovskaya T. J., Khalilov E. M., Kaliman M. A. et al. Phosphatidylcholine (Polyenphosphatidylcholine/PPC) Effect on Cell Membranes and Transport of cholesterol. Archakov A. I., Gunderemann K-J. Eds. Bingen/Rhein. 1989; 99–110.
  51. Hergenç G., Onat A., Sari I. et al. Serum total and high-density lipoprotein phospholipid levels in a population-based study and relationship to risk of metabolic syndrome and coronary disease. Angiology 2008;59 (1):26–35. DOI: 10.1177/0003319706291145.
  52. Kostner G. M., Marth E., Pfeiffer K. P., Wege H. Apolipoproteins AI, AII and HDL phospholipids but not Apo-B are risk indicators for occlusive cerebrovascular disease. Eur Neurol 1986;25(5):346–354.
  53. Kunz F., Pechlaner C., Erhart R. et al. HDL and plasma phospholipids in coronary artery disease. Arterioscler Thromb 1994;14(7):1146–1150.
  54. Piperi C., Kalofoutis C., Skenderi K. et al. Beneficial effects of raloxifene and atorvastatin on serum lipids and HDL phospholipids levels of postmenopausal women. J Obstet Gynaecol 2004;24(4):414–419.
  55. Kontush A., Chapman M. J. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol 2010;21 (4):312–318. DOI: 10.1097/MOL.0b013e32833bcdc1
  56. Jian B., de la Llera-Moya M., Royer L. et al. Modification of the cholesterol efflux properties of human serum by enrichment with phospholipid. J Lipid Res 997;38:152–162.
  57. Dullens S. P., Plat J., Mensink R. P. Increasing apoA-I production as a target for CHD risk reduction. Nutr Metab Cardiovasc Dis 2007;17 (8):616–628.
  58. Ozerova I. N., Metelskaya V. A., Perova N. V. et al. Subfractional spectrum of high density lipoproteins in coronary atherosclerosis patients. Cardiovascular Therapy And Prevention 2015;14 (2):31–34. Russian (Озерова И. Н., Метельская В. А., Перова Н. В. и др. Субфракционный спектр липопротеинов высокой плотности у больных с коронарным атеросклерозом. Кардиоваскулярная терапия и профилактика 2015;14 (2):31–34).
  59. Gundermann K.‑J. The essential phospholipids as a membrane therapeutic. Publisher: Polish Section of European Society of Biochemical Pharmacology, Institute of Pharmacology and Toxicology, Medical Academy, Szczecin. 1993.
  60. Gundermann K.‑J., Kuenker A., Kuntz E., Droździk M. Activity of essential phospholipids (EPL) from soybean in liver diseases. Pharmacol Rep 2011;63 (3):643–659.
  61. Markin S. S., Olbinskaya L. I., Torkhovskaya T. I. Phospholipid therapy of atherosclerosis. Moscow, “Belyi veter”, 2016. Russian (Маркин С. С., Ольбинская Л. И., Торховская Т. И. Фофолипидная терапия атеросклероза. М., «Белый ветер», 2016).
  62. Medvedeva N. V., Prozorovskiy V. N., Ignatov D. V. et al. Pharmacological agents and transport nanosystems based on plant phospholipids. Biomed Khim 2015;61 (2):219–230. Russian (Медведева Н. В., Прозоровский В. Н., Игнатов Д. В. и др. Лекарственные препараты и транспортные наносистемы на основе растительных фосфолипидов. Биомедицинская химия 2015;61 (2):219–230). DOI: 10.18097/PBMC20156102219
Торховская Т. И., Кудинов В. А., Захарова Т. С., Маркин С. С. Дисфункциональные липопротеины высокой плотности: роль в атерогенезе и потенциальные мишени для фосфолипидной терапии. Кардиология. 2018;58(3):73–83.

Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
Ru En