2018


Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
2018/№1

Влияние сахароснижающих препаратов на риск сердечно-сосудистых осложнений при сахарном диабете 2‑го типа: реалии и перспективы

Кобалава Ж. Д.1, 2, Киякбаев Г. К.1, 2
1 Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов» (РУДН) Министерства образования РФ, Москва
2 ФГБОУ ВО «Московский государственный университет им. М. В. Ломоносова», Москва

Ключевые слова: сахарный диабет 2-го типа, сердечно-сосудистые осложнения, сахароснижающие препараты

DOI: 10.18087/cardio.2018.1.10082

  1. Kannel W. B., McGee D. L. Diabetes and cardiovascular disease. The Framingham study. JAMA 1979;241 (19):2035–2038.
  2. Sarwar N., Gao P., Seshasai S. R. et al. Diabetes mellitus, fasting blood glucose сoncentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010;375:2215–2222.
  3. Di Angelantonio E., Kaptoge S., Wormser D. et al. Association of cardiometabolic multimorbidity with mortality. JAMA 2015;314:52–60.
  4. IDF Diabetes Atlas Group. Update of mortality attributable to diabetes for the IDF diabetes atlas: estimates for the year 2011. Diabetes Res Clin Pract 2013;100:277–279.
  5. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016;387:1513–1530.
  6. Tancredi M., Rosengren A., Svensson A. M. et al. Excess mortality among persons with type 2 diabetes. N Engl J Med 2015;373:1720–1732.
  7. Mozaffarian D., Benjamin E. J., Go A. S. et al. Heart disease and stroke statistics– 2016 update: a report from the American Heart Association. Circulation 2016;133: e38 – e360.
  8. Fox C. S., Golden S. H., Anderson C. et al. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation 2015;132:691–718.
  9. Cavender M. A., Steg G., Smith S. C. et al. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death. Outcomes at 4 years from the Reduction of Atherothrombosis for Continued Health (REACH) registry. Circulation 2015;132:923–931.
  10. Fitchett D., Zinman B., Wanner C. et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME trial. Eur Heart J 2016;37:1526–1534.
  11. Green J. B., Bethel M. A., Armstrong P. W. et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015;373:232–242.
  12. Bertoni A. G., Hundley W. G., Massing M. W. et al. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care 2004;27:699–703.
  13. Matsushita K., Blecker S., Pazin-Filho A. et al. The association of hemoglobin A1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes 2010;59:2020–2026.
  14. Erqou S., Lee C. T., Suffoletto M. et al. Association between glycated haemoglobin and the risk of congestive heart failure in diabetes mellitus: systematic review and meta-analysis. Eur J Heart Fail 2013;15:185–193.
  15. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993;329:977–986.
  16. UK Prospective Diabetes Study (UKPDS) Group. Intensive bloodglucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853.
  17. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854–865.
  18. Gerstein H. C. Jr, Miller M. E., Byington R. P. et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545–2559.
  19. Patel A., MacMahon S., Chalmers J. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560–2572.
  20. Gerstein H. C., Miller M. E., Genuth S. et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med 2011;364:818–828.
  21. Nissen S. E., Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007;356:2457–2471.
  22. Food and Drug Administration: Guidance for industry: diabetes mellitus - evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. http://www.fda.gov/downloads/Drugs/Guidance Compliance Regulatory/lnformation/Guidances/ucm071627.pdf.
  23. European Medicines Agency. Guideline on Clinical Investigation of Medicinal Products in the Treatment or Prevention of Diabetes Mellitus. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/06/WC500129256.pdf.
  24. Scirica B. M., Bhatt D. L., Braunwald E. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013;369 (14):1317–1326.
  25. Smooke S., Horwich T. B., Fonarow G. C. Insulin-treated diabetes is associated with a marked increase in mortality in patients with advanced heart failure. Am Heart J 2005;149:168–174.
  26. McMurray J. J., Gerstein H. C., Holman R. R., Pfeffer M. A. Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol 2014;2:843–851.
  27. McGuire D. K., Van de Werf F., Armstrong P. W. et al. Association Between Sitagliptin Use and Heart Failure Hospitalization and Related Outcomes in Type 2 Diabetes Mellitus. Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol 2016;1 (2):126–135.
  28. Kristensen S. L., Preiss D., Jhund P. S. et al. PARADIGM-HF Investigators and Committees. Risk Related to Pre-Diabetes Mellitus and Diabetes Mellitus in Heart Failure With Reduced Ejection Fraction: Insights From Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure Trial. Circ Heart Fail 2016;9 (1). pii:e002560.
  29. Pfeffer M. A., Claggett В., Diaz R. et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med 2015;373 (23):2247–2257.
  30. Marso S. P., Daniels G. H., Brown-Frandsen K. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016;375 (4):311–322.
  31. Marso S. P., Bain S. C., Consoli A. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016;375 (19):1834–1844.
  32. Oyama J., Node K. Incretin therapy and heart failure. Circ J 2014;78 (4):819–824.
  33. Marso S. P., Daniels G. H., Brown-Frandsen K. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016;375:311–322.
  34. Abdul-Ghani M. A., Norton L., Defronzo R. A. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev 2011;32 (4):515–531.
  35. Wilding J. P., Blonde L., Leiter L. A. et al. Efficacy and safety of canagliflozin by baseline HbAlc and known duration of type 2 diabetes mellitus. J Diabetes Complications 2015;29 (3):438–444.
  36. Stein P., Berg J. K., Morrow L. et al. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, reduces post-meal glucose excursion in patients with type 2 diabetes by a non-renal mechanism: results of a randomized trial. Metabolism 2014;63(10):1296–1303.
  37. Stenlof К., Cefalu W. T., Kim K. A. et al. Long-term efficacy and safety of canagliflozin monotherapy in patients with type 2 diabetes inadequately controlled with diet and exercise: Findings from the 52‑Week CAN-TATA-M study. Curr Med Res Opin 2014;30(2):163–175.
  38. Bailey C. J., Gross J. L.. Hennicken D. et al. Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled 102‑week trial. BMC Med 2013:11:43.
  39. Rosenstock J., Chuck L., Gonzalez-Ortiz M. et al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-naive type 2 diabetes. Diabetes Care 2016;39 (3):353–362.
  40. Nauck M. A., Del Prato S., Duran-Garcia S. et al. Durability of glycaemic efficacy over 2years with dapagliflozin versus glipizide as add-on therapies in patients whose type 2 diabetes mellitus is inadequately controlled with metformin. Diabetes Obes Metab 2014;16 (11):1111–1120.
  41. Del Prato S., Nauck M., Duran-Garcia S. et al. Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4‑year data. Diabetes Obes Metab 2015;17 (6):581–590.
  42. Kovacs C. S., Scshiah V., Swallow R. et al; EMPA-REG PIO™ trial investigators. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24‑week, randomized, placebocontrolled trial. Diabetes Obes Metab 2014:16 (2):147–158.
  43. Rosenstock J., Jelaska A., Zeller C. et al.; EMPA-REG BASALTM trial investigators. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78‑week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2015;17 (10):936–948.
  44. Wilding J. P., Woo V., Rohwedder K. et al.; Dapagliflozin 006 Study Group. Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes Metab 2014;16 (2):124–136.
  45. Sonesson C., Johansson P. A., Johnsson E., Gause-Nilsson I. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc Diabetol 2016;15:37.
  46. Zinman B., Wanner C., Lachin J. M. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117–2128.
  47. US Food and Drug Administration (FDA). Guidance for Industry: Non-Inferiority Clinical Trials. FDA. Silver Spring. MD. 2010.
  48. Kaul S. Is the mortality benefit with empagliflozin in type 2 diabetes mellitus too good to be true? Circulation 2016;134:94–96.
  49. Singh A. K., Singh R. SAVOR-TIMI to SUSTAIN-6: a critical comparison of cardiovascular outcome trials of antidiabetic drugs. Expert Rev Clin Pharmacol 2017;10 (4):429–442.
  50. Ponikowski P., Voors A. A., Anker S. D. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;37:2129–2200.
  51. Butler J., Kalogeropoulos A., Georgiopoulou V. et al. Incident heart failure prediction in the elderly: the health ABC heart failure score. Circ Heart Fail 2008;1:125–133.
  52. Fitchett D., Butler J., van de Borne P. et al: Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME trial. Eur Heart J 2017;0:1–8. doi:10.1093/eurheartj/ehx511
  53. Fitchett D., Zinman B., Wanner Ch. et al. the EMPA-REG OUTCOME® trial investigators. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J 2016;37(19):1526–1534.
  54. FDA Briefing Document Endocrine and Metabolic Drug Advisory Committee Meeting June 28, 2016. http://www.fda.gov/downloads/Advisory Committees/Committees Meeting Materials/Drugs/Endocrinologic and Metabolic Drugs Advisory Committee/UCM508422.pdf.
  55. Neal B., Perkovic V., Mahaffey K. W. et al., on behalf of the CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017;377:644–657.
  56. Kosiborod M., Cavender M. A., Fu A. Z. et al. and on behalf of the CVD-REAL Investigators and Study Group. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs. The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017;136:249–259.
  57. Stuart E. A. Matching methods for causal inference: a review and a look forward. Stat Sci 2010;25:1–21.
  58. DECLARE-TIMI 58: Dapagliflozin Effects on Cardiovascular Events. Доступно на: https://www.clinicaltrials.gov/ct2/show/NCT01730534.
  59. VERTIS-CV: Cardiovascular Outcomes Following Ertugliflozin Treatment in Type 2 Diabetes Mellitus Participants with Vascular Disease. Доступно на: https://www.clinicaltrials.gov/ct2/show/NCT01986881.
  60. Singh J. S., Fathi A., Vickneson K. et al. Research into the effect of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design. Cardiovasc Diabetol 2016;15:97.
  61. Tanaka A., Inoue T., Kitakaze M. et al. Rationale and design of a randomized trial to test the safety and non-inferiority of canagliflozin in patients with diabetes with chronic heart failure: the CANDLE trial. Cardiovasc Diabetol 2016;15:57.
  62. Dapagliflozin Effect on Symptoms and Biomarkers in Diabetes Patients With Heart Failure (DEFINE-HF). NCT02653482. Доступно на: https://clinicaltrials.gov/ct2/show/NCT02653482.
  63. Dapagliflozin in Type 2 Diabetes or Pre-diabetes, and PRESERVED Ejection Fraction Heart Failure (PRESERVED-HF). NCT03030235. Доступно на: https://clinicaltrials.gov/ct2/show/NCT03030235.
  64. Tanaka A., Node K. Emerging roles of sodium-glucose cotransporter 2 inhibitors in cardiology. J Cardiol 2017;69:501–507.
  65. Heerspink H. J., Perkins B. A., Fitchett D. H. et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016;134:752–772.
  66. Rajasekeran H., Lytvyn Y., Cherney D. Z. Sodium – glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: th, emerging role of natriuresis. Kidney Int 2016;89:524–526.
  67. Baker W. L., Smyth L. R., Riche D. M. et al. Effects of sodium – glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens 2014;8. 262–759.
  68. Chilton R., Tikkanen I., Cannon C. P. et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 2015;17:1180–1193.
  69. De Nicola L., Gabbai F. B., Liberti M. E. et al. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. Am J Kidney Dis 2014;64:16–24.
  70. Gilbert R. E. Sodium – glucose linked transporter-2 inhibitors: potential for renoprotection beyond blood glucose lowering? Kidney Int 2014;86:693–700.
  71. Cherney D. Z., Perkins B. A., Soleymanlou А. et al. Renal hemodynamic effect of sodium – glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014;129:587–597.
  72. Vallon V., Gerasimova M., Rose M. A. et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 2014;306: F194–204.
  73. Cherney D., Lund S. S., Perkins B. A. et al. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia 2016;59:1860–1870.
  74. Wanner C., Inzucchi S. E., Lachin J. M. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016;375:323–334.
  75. Bolinder J., Ljunggren O. Е., Johansson L. et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 2014;16:159–169.
  76. Neeland I. J., McGuire D. K., Chilton R. et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diabetes Vasc Dis Res 2016;13:119–126.
  77. Davies M. J., Trujillo A., Vijapurkar U. et al. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2015;17:426–429.
  78. Dapa-HF (Study to Evaluate the Effect of Dapagliflozin on the Incidence of Worsening Heart Failure or Cardiovascular Death in Patients With Chronic Heart Failure). Доступно на: https://clinicaltrials.gov/ct2/show/results/NCT03036124.
  79. EMPEROR-Reduced (EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction). Доступно на: https://clinicaltrials.gov/ct2/show/NCT03057977.
Кобалава Ж. Д., Киякбаев Г. К. Влияние сахароснижающих препаратов на прогноз сердечно-сосудистых осложнений при сахарном диабете 2‑го типа: реалии и перспективы. Кардиология. 2018;58(1):53–65.

Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
Ru En